Glutathione reverses endothelial damage from peroxynitrite, the byproduct of nitric oxide degradation, in crystalloid cardioplegia. (49/1261)

BACKGROUND: NO has been advocated as an adjunct to cardioplegia solutions. However, NO undergoes a rapid biradical reaction with superoxide anions to produce peroxynitrite (ONOO(-)). ONOO(-) in crystalloid cardioplegia solution induces injury to coronary endothelium and to systolic function after cardioplegia and reperfusion. However, ONOO(-) may be degraded to less lethal or cardioprotective intermediates with glutathione (GSH) in reactions separate from its well known antioxidant effects. We hypothesized that GSH detoxifies ONOO(-) and reverses defects in endothelial function and systolic function when present in crystalloid cardioplegia. METHODS AND RESULTS: In anesthetized dogs on cardiopulmonary bypass, a 45-minute period of global normothermic ischemia was followed by 60 minutes of intermittent cold crystalloid cardioplegia (Plegisol) and 2 hours of reperfusion. The cardioplegia solution contained 5 micromol/L authentic ONOO(-); catalase was included to attenuate the potential antioxidant effects of GSH and to unmask the effects on ONOO(-). In 1 group (CP+GSH, n=5), the cardioplegia contained 500 micromol/L GSH, whereas 1 group received crystalloid cardioplegia without GSH (CCP, n=6). There were no group differences in postcardioplegia left ventricular systolic function (end-systolic pressure-volume relation, impedance catheter: CCP 10.0+/-2.4 versus CP+GSH 10.6+/-1.3 mm Hg/mL) or diastolic chamber stiffness (ss-coefficient: CCP 0.35+/-0.2 versus CP+GSH 0.31+/-0.18). Myocardial neutrophil accumulation (myeloperoxidase activity) was attenuated in CP+GSH versus CCP (2.2+/-0.7 versus 5.4+/-1.2, P:<0.05). In postexperimental coronary arteries, maximal endothelium-dependent relaxation was greater in CP+GSH than in CCP (118+/-6% versus 92+/-5%, P:<0.05), with a smaller EC(50) value (-7. 10+/-0.05 versus -6.98+/-0.03, respectively, P:<0.05). Smooth muscle relaxation was complete in both groups. The adherence of neutrophils to postexperimental coronary arteries as a measure of endothelial function was less in CP+GSH than in CCP (98+/-18 versus 234+/-36 neutrophils/mm(2), P:<0.05). Nitrosoglutathione, a byproduct of the reaction between ONOO(-) and GSH, was greater in CP+GSH than in CCP (4.1+/-2.3 versus 0.4+/-0.2 microg/mL, P:<0.05). CONCLUSIONS: GSH in crystalloid cardioplegia detoxifies ONOO(-) and forms cardioprotective nitrosoglutathione, resulting in attenuated neutrophil adherence and selective endothelial protection through the inhibition of neutrophil-mediated damage.  (+info)

Pharmacokinetics and pulmonary extraction of clevidipine, a new vasodilating ultrashort-acting dihydropyridine, during cardiopulmonary bypass. (50/1261)

Clevidipine is a new vascular-selective, calcium channel antagonist of the dihydropyridine type with an ester side chain susceptible to esterase metabolism. In healthy volunteers, it has high clearance (0.069 litres min-1 kg-1) with a small volume of distribution at steady state (0.19 litres kg-1). The half-lives of the two initial rapid phases, accounting for approximately 95% of the area under the curve after an i.v. bolus, are 0.7 and 2.3 min, respectively. The aims of this study were to determine the pharmacokinetics and the pulmonary extraction ratio of clevidipine in patients undergoing cardiac surgery. Seventeen patients received clevidipine as an i.v. infusion before cardiopulmonary bypass (CPB), and eight of these patients were also given clevidipine during hypothermic CPB. Mixed venous and arterial blood samples were taken for pharmacokinetic analysis and calculation of pulmonary extraction ratio. A two-compartment pharmacokinetic model with zero-order input was used to describe the pharmacokinetics of clevidipine before and during CPB. Virtually identical concentrations in mixed venous and arterial blood suggest negligible pulmonary metabolism of clevidipine. The total blood clearance of clevidipine is extremely high (0.055 litres min-1 kg-1). During CPB, clearance of clevidipine was significantly reduced, to 0.03 litres min-1 kg-1 (P < 0.005), probably as a consequence of reduced body temperature.  (+info)

Prolonged but delayed postischemic hypothermia: a long-term outcome study in the rat middle cerebral artery occlusion model. (51/1261)

Delayed but prolonged hypothermia persistently decreases cell death and functional deficits after global cerebral ischemia in rodents. Postischemic hypothermia also reduces infarction after middle cerebral artery occlusion (MCAO) in rat. Because initial neuroprotection is sometimes transient and may not subserve functional recovery, especially on demanding tasks, the authors examined whether postischemic cooling would persistently reduce infarction and forelimb reaching deficits after MCAO. Male spontaneously hypertensive rats were trained to retrieve food pellets in a staircase test that measures independent forelimb reaching ability. Later, rats underwent 90 minutes of normothermic MCAO, through a microclip, or sham operation. In some rats, prolonged cooling (33 degrees C for 24 hours and then 35 degrees C for 24 hours) began 2.5 hours after the onset of ischemia (60 minutes after the start of reperfusion; n = 17 with subsequently 1 death) or sham procedures (n = 4), whereas untreated sham (n = 4) and ischemic (n = 16 with subsequently 1 death) rats maintained normothermia. An indwelling abdominal probe continually measured core temperature, and an automated fan and water spray system was used to produce hypothermia. One month later rats were reassessed in the staircase test over five days and then killed. The contralateral limb impairment in food pellet retrieval was completely prevented by hypothermia (P = 0.0001). Hypothermia reduced an infarct volume of 67.5 mm3 after untreated ischemia to 35.8 mm3 (P < 0.0001). These findings of persistent benefit encourage the clinical assessment of hypothermia.  (+info)

Prolonged mild hypothermia therapy protects the brain against permanent focal ischemia. (52/1261)

BACKGROUND AND PURPOSE: The efficacy of hypothermic intervention for permanent focal ischemia has yet to be clarified. This study investigated the effect of a prolonged moderate or mild hypothermia on permanent focal ischemia in rats. METHODS: Two permanent focal ischemia models in male Sprague-Dawley rats were used. Moderate (30 degrees C, in experiment 1) or mild (33 degrees C, in experiment 2) hypothermia was achieved at the time of the induction of focal ischemia and was maintained for 2 hours under general anesthesia. Thereafter, the hypothermic condition was maintained by means of a cold room for a total of 24 hours. The infarct volume and neurological function were analyzed for a maximum of 21 days and compared with that of the normothermia group. Regional cerebral blood flow was monitored for 6 hours in the ischemic core and penumbra region. RESULTS: In experiment 1, the total infarct volume in the normothermic group was 368+/-59 mm(3); in contrast, it was significantly smaller in the hypothermia group: 169+/-33 mm(3) at 48 hours (mean+/-SEM, P:<0.05). In experiment 2, the infarct volume was 211+/-19 mm(3) in the normothermia group and 88+/-15 mm(3) in the hypothermia group at 21 days (P:<0.05). There were significant differences in neurological function from days 2 through 21 between the two groups. Mean regional cerebral blood flow in the penumbra region increased to a level >50% of baseline. CONCLUSIONS: Prolonged mild hypothermia suppressed the development of cerebral infarct and neurological deficit chronically after the induction of permanent focal ischemia.  (+info)

Rapid hypothermic aortic flush can achieve survival without brain damage after 30 minutes cardiac arrest in dogs. (53/1261)

BACKGROUND: Neither exsanguination to pulselessness nor cardiac arrest of 30 min duration can be reversed with complete neurologic recovery using conventional resuscitation methods. Techniques that might buy time for transport, surgical hemostasis, and initiation of cardiopulmonary bypass or other resuscitation methods would be valuable. We hypothesized that an aortic flush with high-volume cold normal saline solution at the start of exsanguination cardiac arrest could rapidly preserve cerebral viability during 30 min of complete global ischemia and achieve good outcome. METHODS: Sixteen dogs weighing 20-25 kg were exsanguinated to pulselessness over 5 min, and circulatory arrest was maintained for another 30 min. They were then resuscitated using closed-chest cardiopulmonary bypass and had assisted circulation for 2 h, mild hypothermia (34 degrees C) for 12 h, controlled ventilation for 20 h, and intensive care to outcome evaluation at 72 h. Two minutes after the onset of circulatory arrest, the dogs received a flush of normal saline solution at 4 degrees C into the aorta (cephalad) via a balloon catheter. Group I (n = 6) received a flush of 25 ml/kg saline with the balloon in the thoracic aorta; group II (n = 7) received a flush of 100 ml/kg saline with the balloon in the abdominal aorta. RESULTS: The aortic flush decreased mean tympanic membrane temperature (Tty) in group I from 37.6 +/- 0.1 to 33.3 +/- 1.6 degrees C and in group II from 37.5 +/- 0.1 to 28.3 +/- 2.4 degrees C (P = 0.001). In group 1, four dogs achieved overall performance category (OPC) 4 (coma), and 2 dogs achieved OPC 5 (brain death). In group II, 4 dogs achieved OPC 1 (normal), and 3 dogs achieved OPC 2 (moderate disability). Median (interquartile range [IQR]) neurologic deficit scores (NDS 0-10% = normal; NDS 100% = brain death) were 69% (56-99%) in group I versus 4% (0-15%) in group II (P = 0.003). Median total brain histologic damage scores (HDS 0 = no damage; > 100 = extensive damage; 1,064 = maximal damage) were 144 (74-168) in group I versus 18 (3-36) in group II (P = 0.004); in three dogs from group II, the brain was histologically normal (HDS 0-5). CONCLUSIONS: A single high-volume flush of cold saline (4 degrees C) into the abdominal aorta given 2 min after the onset of cardiac arrest rapidly induces moderate-to-deep cerebral hypothermia and can result in survival without functional or histologic brain damage, even after 30 min of no blood flow.  (+info)

Feedback connections act on the early part of the responses in monkey visual cortex. (54/1261)

We previously showed that feedback connections from MT play a role in figure/ground segmentation. Figure/ground coding has been described at the V1 level in the late part of the neuronal responses to visual stimuli, and it has been suggested that these late modulations depend on feedback connections. In the present work we tested whether it actually takes time for this information to be fed back to lower order areas. We analyzed the extracellular responses of 169 V1, V2, and V3 neurons that we recorded in two anesthetized macaque monkeys. MT was inactivated by cooling. We studied the time course of the responses of the neurons that were significantly affected by the inactivation of MT to see whether the effects were delayed relative to the onset of the response. We first measured the time course of the feedback influences from MT on V1, V2, and V3 neurons tested with moving stimuli. For the large majority of the 51 neurons for which the response decreased, the effect was present from the beginning of the response. In the responses averaged after normalization, the decrease of response was significant in the first 10-ms bin of response. A similar result was found for six neurons for which the response significantly increased when MT was inactivated. We then looked at the time course of the responses to flashed stimuli (95 neurons). We observed 15 significant decreases of response and 14 significant increases. In both populations, the effects were significant within the first 10 ms of response. For some neurons with increased responses we even observed a shorter latency when MT was inactivated. We measured the latency of the response to the flashed stimuli. We found that even the earliest responding neurons were affected early by the feedback from MT. This was true for the response to flashed and to moving stimuli. These results show that feedback connections are recruited very early for the treatment of visual information. It further indicates that the presence or absence of feedback effects cannot be deduced from the time course of the response modulations.  (+info)

Hypothermic arrest and potassium arrest: metabolic and myocardial protection during elective cardiac arrest. (55/1261)

Hypothermic arrest, potassium arrest, and ischemic arrest, either singly or in combination, with or without coronary perfusion were studied in an isolated perfused rat heart preparation. Procedures that permitted the maintenance of high cellular levels of adenosine triphosphate (ATP) and creatine phosphate during arrest, e.g., coronary perfusion with hypothermic solutions or solutions containing 16.0 mM potassium, produced a fully reversible arrest with complete cardiac recovery. Cardiac arrest and coronary flow were related to the degree of hypothermia and the concentration of potassium in the coronary perfusate, and the minimum conditions required to induce complete cardiac arrest were ascertained. The effects of hypothermia and potassium were additive; total cardiac arrest could be obtained by combining small evaluations of potassium with moderate hypothermia. Under these conditions, cellular high-energy phosphates were maintained, and complete recovery was possible. Under conditions in which arrest was obtained without maintaing coronary perfusion, e.g., ischemic arrest, cellular high-energy phosphates declined rapidly, and the hearts exhibited poor recoveries. Some protection could be afforded to the ischemic myocardium by topical hypothermia or by combining the ischemia with potassium arrest. In both instances, ATP and creatine phosphate were maintained at higher levels, and improved recoveries were observed.  (+info)

Effect of hypothermia on the hepatic uptake and biliary excretion of vecuronium in the isolated perfused rat liver. (56/1261)

BACKGROUND: Hypothermia prolongs the time course of action of nondepolarizing muscle relaxants. It is not known whether this prolongation is caused by a reduced rate of extrahepatic distribution or elimination, liver uptake, metabolic clearance, or biliary excretion. Therefore, the authors studied the effects of hypothermia on the net hepatic uptake, metabolism, and biliary excretion of vecuronium in isolated perfused rat liver. METHODS: Livers of Wistar rats were perfused with Krebs Ringer solution (1% albumin, 3.3% carbon dioxide in oxygen, pH 7.36-7.42, 38 degrees C). Each perfusion experiment (recirculatory perfusion system) was divided into three phases. In phase 1, a bolus dose of vecuronium (950 microg) was followed by a continuous infusion of vecuronium (63 microg/min) throughout the perfusion experiment. In phase 2, the temperature was reduced to 28 degrees C. In phase 3, temperature was restored. In controls, the temperature was kept constant throughout the perfusion. Concentrations of vecuronium and its metabolites were measured in perfusion medium, bile, and liver homogenate. Parameters of a multicompartmental liver model were fitted to the concentration patterns in perfusion medium and in bile. RESULTS: Hypothermia increased vecuronium concentrations in the perfusion medium from 4.0 microg/ml (range, 2.5-6.6) to 15.6 microg/ml (11.5-18.4 microg/ml; P = 0.018). Hypothermia reduced the biliary excretion rate of 3-desacetyl vecuronium from 18% (range, 6-37%) to 16% (range, 4-19%) of that of vecuronium (P = 0.018). Pharmacokinetic analysis confirmed that hypothermia reduced the rate constants of hepatic uptake and metabolism from 0.219 to 0.053 and from 0.059 to 0.030, respectively. CONCLUSIONS: Hypothermia significantly and reversibly reduced the net hepatic uptake of vecuronium. Hypothermia reduced the metabolism of vecuronium and the biliary excretion rate of 3-desacetyl vecuronium.  (+info)