(1/754) Reduction of laparoscopic-induced hypothermia, postoperative pain and recovery room length of stay by pre-conditioning gas with the Insuflow device: a prospective randomized controlled multi-center study.

OBJECTIVE: To assess the efficacy and safety of Insuflow (Georgia BioMedical, Inc.) filter heater hydrator device in reducing the incidence, severity and extent of hypothermia, length of recovery room stay and postoperative pain at the time of laparoscopy. DESIGN: Prospective, randomized, blinded, controlled multi-center study. Patients underwent gynecologic procedures via laparoscopy; surgeons, anesthesiologists and recovery room personnel assessed the results. SETTING: Seven North American institutions. PATIENTS: Seventy-two women for safety evaluation and efficacy studies. INTERVENTIONS: Intraoperative pre-conditioning of laparoscopic gas with the Insuflow device (treatment) or standard raw gas (control) during laparoscopic surgery and postoperatively. MAIN OUTCOME MEASURES: Incidence, severity and extent of hypothermia, postoperative pain perception and length of recovery room stay. RESULTS: The Insuflow group had significantly less intraoperative hypothermia, reduced length of recovery room stay and reduced postoperative pain. Pre-conditioning of laparoscopic gas by filtering heating and hydrating was well tolerated with no adverse effects. The safety profile of the Insuflow pre-conditioned gas showed significant benefits compared to currently used raw gas. CONCLUSIONS: Pre-conditioning laparoscopic gas by filtering heating and hydrating with the Insuflow device was significantly more effective than the currently used standard raw gas and was safe in reducing or eliminating laparoscopic-induced hypothermia, shortening recovery room length of stay and reducing postoperative pain.  (+info)

(2/754) The effect of graded postischemic spinal cord hypothermia on neurological outcome and histopathology after transient spinal ischemia in rat.

BACKGROUND: Previous data have shown that postischemic brain hypothermia is protective. The authors evaluated the effect of postischemic spinal hypothermia on neurologic function and spinal histopathologic indices after aortic occlusion in the rat. METHODS: Spinal ischemia was induced by aortic occlusion lasting 10 min. After ischemia, spinal hypothermia was induced using a subcutaneous heat exchanger. Three studies were conducted. In the first study, the intrathecal temperature was decreased to 34, 30, or 27 degrees C for 2 h beginning with initial reperfusion. In the second study, hypothermia (target intrathecal temperature 27 degrees C) was initiated with reflow and maintained for 15 or 120 min. In the third study, the intrathecal temperature was decreased to 27 degrees C for 2 h starting 5, 60, or 120 min after normothermic reperfusion. Animals survived for 2 or 3 days, at which time they were examined and perfusion fixed with 4% paraformaldehyde. RESULTS: Normothermic ischemia followed by normothermic reflow resulted in spastic paraplegia and spinal neuronal degeneration. Immediate postischemic hypothermia (27 degrees C for 2 h) resulted in decreasing motor dysfunction. Incomplete protection was noted at 34 degrees C. Fifteen minutes of immediate cooling (27 degrees C) also provided significant protection. Delay of onset of post-reflow hypothermia (27 degrees C) by 5 min or more failed to provide protection. Histopathologic analysis revealed temperature-dependent suppression of spinal neurodegeneration, with no effect of delayed cooling. CONCLUSIONS: These findings indicate that the immediate period of reperfusion (0-15 min) represents a critical period that ultimately defines the degree of spinal neuronal degeneration. Hypothermia, when initiated during this period, showed significant protection, with the highest efficacy observed at 27 degrees C.  (+info)

(3/754) Perinatal risk and severity of illness in newborns at 6 neonatal intensive care units.

OBJECTIVES: This multisite study sought to identify (1) any differences in admission risk (defined by gestational age and illness severity) among neonatal intensive care units (NICUs) and (2) obstetric antecedents of newborn illness severity. METHODS: Data on 1476 babies born at a gestational age of less than 32 weeks in 6 perinatal centers were abstracted prospectively. Newborn illness severity was measured with the Score for Neonatal Acute Physiology. Regression models were constructed to predict scores as a function of perinatal risk factors. RESULTS: The sites differed by several obstetric case-mix characteristics. Of these, only gestational age, small for gestational age. White race, and severe congenital anomalies were associated with higher scores. Antenatal corticosteroids, low Apgar scores, and neonatal hypothermia also affected illness severity. At 2 sites, higher mean severity could not be explained by case mix. CONCLUSIONS: Obstetric events and perinatal practices affect newborn illness severity. These risk factors differ among perinatal centers and are associated with elevated illness severity at some sites. Outcomes of NICU care may be affected by antecedent events and perinatal practices.  (+info)

(4/754) Hypothermic stress leads to activation of Ras-Erk signaling.

The small GTPase Ras is converted to the active, GTP-bound state during exposure of vertebrate cells to hypothermic stress. This activation occurs more rapidly than can be accounted for by spontaneous nucleotide exchange. Ras-guanyl nucleotide exchange factors and Ras GTPase-activating proteins have significant activity at 0 degrees C in vitro, leading to the hypothesis that normal Ras regulators influence the relative amounts of Ras-GTP and Ras-GDP at low temperatures in vivo. When hypothermic cells are warmed to 37 degrees C, the Raf-Mek-Erk protein kinase cascade is activated. After prolonged hypothermic stress, followed by warming to physiologic temperature, cultured fibroblasts assume a rounded morphology, detach from the substratum, and die. All of these biologic responses are attenuated by pharmacologic inhibition of Mek. Previously, it had been found that low temperature blocks acute growth factor signaling to Erk. In the present study, we found that this block occurs at the level of Raf activation. Temperature regulation of Ras signaling could help animal cells respond appropriately to hypothermic stress, and Ras-Erk signaling can be manipulated to improve the survival of cells in cold storage.  (+info)

(5/754) Hypothermia: a complication of diabetic ketoacidosis.

During 1969-77, 20 episodes of severe hypothermia occurred in 19 diabetic patients in Nottingham. Thirteen were associated with ketotic hyperosmolar coma, two with lactic acidosis, and one with hypoglycaemia, while in four there was no loss of diabetic control. Ketoacidosis accounted for 11.8% of all admissions for severe accidental hypothermia and was a commoner cause than hypothyroidism (8%). Patients with ketoacidosis were younger and developed hypothermia as often during the summer as during the winter. The metabolic disturbance was characteristic, with severe acidosis (mean pH 7.04), a high blood glucose concentration (mean 56.6 mmol/l; 1020 mg/100 ml), and high plasma osmolality (mean 379.7 mmol (mosmol)/kg). Eight of the 13 episodes proved fatal. Hypothermia may aggravate ketoacidosis and complicate treatment and should be sought in all patients with severe diabetic coma.  (+info)

(6/754) F 11356, a novel 5-hydroxytryptamine (5-HT) derivative with potent, selective, and unique high intrinsic activity at 5-HT1B/1D receptors in models relevant to migraine.

F 11356 (4-[4-[2-(2-aminoethyl)-1H-indol-5-yloxyl]acetyl]piperazinyl-1-yl] ben zonitrile) was designed to take advantage of the superior potency and efficacy characteristics of 5-hydroxytryptamine (5-HT) compared with tryptamine at 5-HT1B/1D receptors. F 11356 has subnanomolar affinity for cloned human and nonhuman 5-HT1B and 5-HT1D receptors, and its affinity for 5-HT1A and other 5-HT receptors, including the 5-ht1F subtype, is 50-fold lower and micromolar, respectively. In C6 cells expressing human 5-HT1B or human 5-HT1D receptors, F 11356 was the most potent compound in inhibiting forskolin-induced cyclic AMP formation (pD2 = 8.9 and 9.6), and in contrast to tryptamine and derivatives, it produced maximal enhancement of [35S]guanosine-5'-O-(3-thio)triphosphate-specific binding equivalent to 5-HT. F 11356 was equipotent to 5-HT (pD2 = 7.1 versus 7.2) and more potent than tryptamine derivatives in contracting rabbit isolated saphenous vein. In isolated guinea pig trigeminal ganglion neurons, F 11356 was more potent (pD2 = 7.3 versus 6.7) and induced greater increases in outward hyperpolarizing Ca2+-dependent K+ current than sumatriptan. In anesthetized pigs, F 11356 elicited highly cranioselective, more potent (from 0.16 microgram/kg i.v.) and greater carotid vasoconstriction than tryptamine derivatives. Decreases in carotid blood flow were observed in conscious dogs from 0.63 mg/kg oral F 11356 in the absence of changes in heart rate or behavior. Oral activity was confirmed when hypothermic responses were elicited in guinea pigs (ED50 = 1.6 mg/kg), suggesting that F 11356 also accesses the brain. F 11356 thus is a selective, high-potency agonist at 5-HT1B/1D receptors, which distinguishes itself from tryptamine and derivatives in exerting high intrinsic activity at these receptors in vascular and neuronal models relevant to migraine.  (+info)

(7/754) Humanization of mouse 5-hydroxytryptamine1B receptor gene by homologous recombination: in vitro and in vivo characterization.

We replaced the coding region of the murine 5-hydroxytryptamine (5-HT)1B receptor by the human 5-HT1B receptor using homologous recombination in embryonic stem cells and generated and characterized homozygous transgenic mice that express only the human (h) 5-HT1B receptor. The distribution patterns of h5-HT1B and murine (m) 5-HT1B receptor mRNA and binding sites in brain sections of transgenic and wild-type mice were identical as measured by in situ hybridization histochemistry and radioligand receptor autoradiography. When measured in parallel under identical conditions, the h5-HT1B receptor expressed in mouse brain had the same pharmacological characteristics as that in human brain. Stimulation by 5-HT1B agonists of [35S]guanosine-5'-O-(3-thio)triphosphate binding in brain sections demonstrated the functional coupling of the h5-HT1B receptor to G proteins in mouse brain. In tissue slices from various brain regions, electrically stimulated [3H]5-HT release was not modified by 5-HT1B agonists in tissue from either transgenic and wild-type mice; a 5-HT1B antagonist enhanced electrically stimulated [3H]5-HT release in wild-type mouse brain, but was ineffective in the transgenics. The centrally active 5-HT1A/5-HT1B agonist RU24969 induced hypothermia but did not increase locomotor activity in the transgenic mice. The ineffectiveness of RU24969 in the transgenic mice could be due to the lower affinity of the compound for the h5-HT1B receptor compared with the m5-HT1B receptor. The present study demonstrates a complete replacement of the mouse receptor by its human receptor homolog and a functional coupling to G proteins. However, modulation of [3H]5-HT release could not be shown. Furthermore, behavioral effects were not clearly observed, which may be due to a lack of appropriate tools.  (+info)

(8/754) Acute systemic reaction and lung alterations induced by an antiplatelet integrin gpIIb/IIIa antibody in mice.

Shock is frequently accompanied by thrombocytopenia. To investigate the pathogenic role of platelets in shock, we examined the in vivo effects of monoclonal antibodies (MoAbs) against mouse platelet membrane proteins. Injection of the platelet-specific MoAb MWReg30 to the fibrinogen receptor (gpIIb/IIIa) rendered mice severely hypothermic within minutes. Isotype-matched control antibodies, even if they also recognized platelet surface antigens, did not induce comparable signs. MWReg30 induced early signs of acute lung injury with increased cellularity in the lung interstitium and rapid engorgement of alveolar septal vessels. Despite this in vivo activity, MWReg30 inhibited rather than stimulated platelet aggregation in vitro. MWReg30-binding to platelets led to phosphorylation of gpIIIa, but did not induce morphological signs of platelet activation. The MWReg30-induced reaction was abolished after treatment with MoAbs 2.4G2 to FcgammaRII/III and was absent in FcgammaRIII-deficient mice, clearly demonstrating the requirement for FcgammaRIII on involved leukocytes. Simultaneous administration of tumor necrosis factor exacerbated, whereas a tolerizing regimen of tumor necrosis factor or bacterial lipopolysaccharide completely prevented the reaction. These data suggest that platelet surface-deposited MWReg30-immune complexes lead to an acute Fc-mediated reaction with pulmonary congestion and life-threatening potential that could serve as an in vivo model of acute lung injury.  (+info)