Analysis of the ethylene response in the epinastic mutant of tomato. (73/551)

Ethylene can alter plant morphology due to its effect on cell expansion. The most widely documented example of ethylene-mediated cell expansion is promotion of the "triple response" of seedlings grown in the dark in ethylene. Roots and hypocotyls become shorter and thickened compared with controls due to a reorientation of cell expansion, and curvature of the apical hook is more pronounced. The epinastic (epi) mutant of tomato (Lycopersicon esculentum) has a dark-grown seedling phenotype similar to the triple response even in the absence of ethylene. In addition, in adult plants both the leaves and the petioles display epinastic curvature and there is constitutive expression of an ethylene-inducible chitinase gene. However, petal senescence and abscission and fruit ripening are all normal in epi. A double mutant (epi/epi;Nr/Nr) homozygous for both the recessive epi and dominant ethylene-insensitive Never-ripe loci has the same dark-grown seedling and vegetative phenotypes as epi but possesses the senescence and ripening characteristics of Never-ripe. These data suggest that a subset of ethylene responses controlling vegetative growth and development may be constitutively activated in epi. In addition, the epi locus has been placed on the tomato RFLP map on the long arm of chromosome 4 and does not demonstrate linkage to reported tomato CTR1 homologs.  (+info)

shl, a New set of Arabidopsis mutants with exaggerated developmental responses to available red, far-red, and blue light. (74/551)

The interaction of light perception with development is the subject of intensive genetic analysis in the model plant Arabidopsis. We performed genetic screens in low white light-a threshold condition in which photomorphogenetic signaling pathways are only partially active-for ethyl methane sulfonate-generated mutants with altered developmental phenotypes. Recessive mutants with exaggerated developmental responses were obtained in eight complementation groups designated shl for seedlings hyperresponsive to light. shl1, shl2, shl5, and shl3 shl4 (double mutant) seedlings showed limited or no phenotypic effects in darkness, but showed significantly enhanced inhibition of hypocotyl elongation in low-white, red, far-red, blue, and green light across a range of fluences. These results reflect developmental hyper-responsiveness to signals generated by both phytochrome and cryptochrome photoreceptors. The shl11 mutant retained significant phenotypic effects on hypocotyl length in both the phyA mutant and phyB mutant backgrounds but may be dependent on CRY1 for phenotypic expression in blue light. The shl2 phenotype was partially dependent on PHYB, PHYA, and CRY1 in red, far-red, and blue light, respectively. shl2 and, in particular, shl1 were partially dependent on HY5 activity for their light-hyperresponsive phenotypes. The SHL genes act (genetically) as light-dependent negative regulators of photomorphogenesis, possibly in a downstream signaling or developmental pathway that is shared by CRY1, PHYA, and PHYB and other photoreceptors (CRY2, PHYC, PHYD, and PHYE).  (+info)

A fungal endoglucanase with plant cell wall extension activity. (75/551)

We have identified a wall hydrolytic enzyme from Trichoderma reesei with potent ability to induce extension of heat-inactivated type I cell walls. It is a small (23-kD) endo-1,4-beta-glucanase (Cel12A) belonging to glycoside hydrolase family 12. Extension of heat-inactivated walls from cucumber (Cucumis sativus cv Burpee Pickler) hypocotyls was induced by Cel12A after a distinct lag time and was accompanied by a large increase in wall plasticity and elasticity. Cel12A also increased the rate of stress relaxation of isolated walls at very short times (<200 ms; equivalent to reducing t(0), a parameter that estimates the minimum relaxation time). Similar changes in wall plasticity and elasticity were observed in wheat (Triticum aestivum cv Pennmore Winter) coleoptile (type II) walls, which showed only a negligible extension in response to Cel12A treatment. Thus, Cel12A modifies both type I and II walls, but substantial extension is found only in type I walls. Cel12A has strong endo-glucanase activity against xyloglucan and (1-->3,1-->4)-beta-glucan, but did not exhibit endo-xylanase, endo-mannase, or endo-galactanase activities. In terms of kinetics of action and effects on wall rheology, wall loosening by Cel12A differs qualitatively from the action by expansins, which induce wall extension by a non-hydrolytic polymer creep mechanism. The action by Cel12A mimics some of the changes in wall rheology found after auxin-induced growth. The strategy used here to identify Cel12A could be used to identify analogous plant enzymes that cause auxin-induced changes in cell wall rheology.  (+info)

Embryonic control of epidermal cell patterning in the root and hypocotyl of Arabidopsis. (76/551)

A position-dependent pattern of epidermal cell types is produced during the development of the Arabidopsis seedling root and hypocotyl. To understand the origin and regulation of this patterning mechanism, we have examined the embryonic expression of the GLABRA2 (GL2) gene, which encodes a cell-type-specific transcription factor. Using in situ RNA hybridization and a sensitive GL2::GFP reporter, we discovered that a position-dependent pattern of GL2 expression is established within protodermal cells at the heart stage and is maintained throughout the remainder of embryogenesis. In addition, we show that an exceptional GL2 expression character and epidermal cell pattern arises during development of the root-hypocotyl junction, which represents an anatomical transition zone. Furthermore, we find that two of the genes regulating seedling epidermal patterning, TRANSPARENT TESTA GLABRA (TTG) and WEREWOLF (WER), also control the embryonic GL2 pattern, whereas the CAPRICE (CPC) and GL2 genes are not required to establish this pattern. These results indicate that position-dependent patterning of epidermal cell types begins at an early stage of embryogenesis, before formation of the apical meristems and shortly after the cellular anatomy of the protoderm and outer ground tissue layer is established. Thus, epidermal cell specification in the Arabidopsis seedling relies on the embryonic establishment of a patterning mechanism that is perpetuated postembryonically.  (+info)

Seed reserve-dependent growth responses to temperature and water potential in carrot (Daucus carota L.). (77/551)

Both temperature and soil moisture vary greatly in the surface layers of the soil through which seedlings grow following germination. The work presented studied the impact of these environmental variables on post-germination carrot growth to nominal seedling emergence. The rapid pre-crook downward growth of both the hypocotyl and root was consistent with their requirement for establishment in soil drying from the surface. At all temperatures, both hypocotyl and root growth rates decreased as water stress increased and there was a very distinct temperature optimum that tended to occur at lower temperatures as water stress increased. A model based on the thermodynamics of reversible protein denaturation was adapted to include the effects of water potential in order to describe these growth rate responses. In general, the percentage of seedlings that reached the crook stage (start of upward hypocotyl growth) decreased at the extremes of the temperature range used and was progressively reduced by increasing water stress. A model was developed to describe this response based on the idea that each seedling within a population has lower and upper temperature thresholds and a water potential threshold which define the conditions within which it is able to grow. This threshold modelling approach which applies growth rates within a distribution of temperature and water potential thresholds could be used to simulate seedling growth by dividing time into suitable units.  (+info)

Characterization of a tomato xyloglucan endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls. (78/551)

The reorganization of the cellulose-xyloglucan matrix is proposed to serve as an important mechanism in the control of strength and extensibility of the plant primary cell wall. One of the key enzymes associated with xyloglucan metabolism is xyloglucan endotransglycosylase (XET), which catalyzes the endocleavage and religation of xyloglucan molecules. As with other plant species, XETs are encoded by a gene family in tomato (Lycopersicon esculentum cv T5). In a previous study, we demonstrated that the tomato XET gene LeEXT was abundantly expressed in the rapidly expanding region of the etiolated hypocotyl and was induced to higher levels by auxin. Here, we report the identification of a new tomato XET gene, LeXET2, that shows a different spatial expression and diametrically opposite pattern of auxin regulation from LeEXT. LeXET2 was expressed more abundantly in the mature nonelongating regions of the hypocotyl, and its mRNA abundance decreased dramatically following auxin treatment of etiolated hypocotyl segments. Analysis of the effect of several plant hormones on LeXET2 expression revealed that the inhibition of LeXET2 mRNA accumulation also occurred with cytokinin treatment. LeXET2 mRNA levels increased significantly in hypocotyl segments treated with gibberellin, but this increase could be prevented by adding auxin or cytokinin to the incubation media. Recombinant LeXET2 protein obtained by heterologous expression in Pichia pastoris exhibited greater XET activity against xyloglucan from tomato than that from three other species. The opposite patterns of expression and differential auxin regulation of LeXET2 and LeEXT suggest that they encode XETs with distinct roles during plant growth and development.  (+info)

Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems. (79/551)

Based on work with cotton fibers, a particulate form of sucrose (Suc) synthase was proposed to support secondary wall cellulose synthesis by degrading Suc to fructose and UDP-glucose. The model proposed that UDP-glucose was then channeled to cellulose synthase in the plasma membrane, and it implies that Suc availability in cellulose sink cells would affect the rate of cellulose synthesis. Therefore, if cellulose sink cells could synthesize Suc and/or had the capacity to recycle the fructose released by Suc synthase back to Suc, cellulose synthesis might be supported. The capacity of cellulose sink cells to synthesize Suc was tested by analyzing the Suc phosphate synthase (SPS) activity of three heterotrophic systems with cellulose-rich secondary walls. SPS is a primary regulator of the Suc synthesis rate in leaves and some Suc-storing, heterotrophic organs, but its activity has not been previously correlated with cellulose synthesis. Two systems analyzed, cultured mesophyll cells of Zinnia elegans L. var. Envy and etiolated hypocotyls of kidney beans (Phaseolus vulgaris), contained differentiating tracheary elements. Cotton (Gossypium hirsutum L. cv Acala SJ-1) fibers were also analyzed during primary and secondary wall synthesis. SPS activity rose in all three systems during periods of maximum cellulose deposition within secondary walls. The Z. elegans culture system was manipulated to establish a tight linkage between the timing of tracheary element differentiation and rising SPS activity and to show that SPS activity did not depend on the availability of starch for degradation. The significance of these findings in regard to directing metabolic flux toward cellulose will be discussed.  (+info)

The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation. (80/551)

Peroxisomes are important organelles in plant metabolism, containing all the enzymes required for fatty acid beta-oxidation. More than 20 proteins are required for peroxisomal biogenesis and maintenance. The Arabidopsis pxa1 mutant, originally isolated because it is resistant to the auxin indole-3-butyric acid (IBA), developmentally arrests when germinated without supplemental sucrose, suggesting defects in fatty acid beta-oxidation. Because IBA is converted to the more abundant auxin, indole-3-acetic acid (IAA), in a mechanism that parallels beta-oxidation, the mutant is likely to be IBA resistant because it cannot convert IBA to IAA. Adult pxa1 plants grow slowly compared with wild type, with smaller rosettes, fewer leaves, and shorter inflorescence stems, indicating that PXA1 is important throughout development. We identified the molecular defect in pxa1 using a map-based positional approach. PXA1 encodes a predicted peroxisomal ATP-binding cassette transporter that is 42% identical to the human adrenoleukodystrophy (ALD) protein, which is defective in patients with the demyelinating disorder X-linked ALD. Homology to ALD protein and other human and yeast peroxisomal transporters suggests that PXA1 imports coenzyme A esters of fatty acids and IBA into the peroxisome for beta-oxidation. The pxa1 mutant makes fewer lateral roots than wild type, both in response to IBA and without exogenous hormones, suggesting that the IAA derived from IBA during seedling development promotes lateral root formation.  (+info)