Immunologic effects of yogurt. (65/2860)

Many investigators have studied the therapeutic and preventive effects of yogurt and lactic acid bacteria, which are commonly used in yogurt production, on diseases such as cancer, infection, gastrointestinal disorders, and asthma. Because the immune system is an important contributor to all of these diseases, an immunostimulatory effect of yogurt has been proposed and investigated by using mainly animal models and, occasionally, human subjects. Although the results of these studies, in general, support the notion that yogurt has immunostimulatory effects, problems with study design, lack of appropriate controls, inappropriate route of administration, sole use of in vitro indicators of the immune response, and short duration of most of the studies limit the interpretation of the results and the conclusions drawn from them. Nevertheless, these studies in toto provide a strong rationale for the hypothesis that increased yogurt consumption, particularly in immunocompromised populations such as the elderly, may enhance the immune response, which would in turn increase resistance to immune-related diseases. This hypothesis, however, needs to be substantiated by well-designed randomized, double-blind, placebo-controlled human studies of an adequate duration in which several in vivo and in vitro indexes of peripheral and gut-associated immune response are tested.  (+info)

IL-10 reduces Th2 cytokine production and eosinophilia but augments airway reactivity in allergic mice. (66/2860)

We investigated the effects of interleukin (IL)-10 administration on allergen-induced Th2 cytokine production, eosinophilic inflammation, and airway reactivity. Mice were sensitized by intraperitoneal injection of ragweed (RW) adsorbed to Alum and challenged by intratracheal instillation of the allergen. Sensitization and challenge with RW increased concentrations of IL-10 in bronchoalveolar lavage (BAL) fluid from undetectable levels to 60 pg/ml over 72 h. Intratracheal instillation of 25 ng of recombinant murine IL-10 at the time of RW challenge further elevated BAL fluid IL-10 concentration to 440 pg/ml but decreased BAL fluid IL-4, IL-5, and interferon-gamma levels by 40-85% and eosinophil numbers by 70% (P < 0.0001). Unexpectedly, the same IL-10 treatment increased airway reactivity to methacholine in spontaneously breathing mice that had been sensitized and challenged with RW (P < 0.001). IL-10 treatment in naive animals or RW-sensitized mice challenged with PBS failed to increase airway reactivity, demonstrating that IL-10 induces an increase in airway reactivity only when it is administered in conjunction with allergic sensitization and challenge. The results demonstrate that IL-10 reduces Th2 cytokine levels and eosinophilic inflammation but augments airway hyperreactivity. Thus, despite its potent anti-inflammatory activity, IL-10 could contribute to the decline in pulmonary function observed in asthma.  (+info)

The mouse mammary tumor virus promoter adopts distinct chromatin structures in human breast cancer cells with and without glucocorticoid receptor. (67/2860)

Steroid receptors represent a class of transcription regulators that act in part by overcoming the often repressive nature of chromatin to modulate gene activity. The mouse mammary tumor virus (MMTV) promoter is a useful model for studying transcriptional regulation by steroid hormone receptors in the context of chromatin. The chromatin architecture of the promoter prevents the assembly of basal transcription machinery and binding of ubiquitous transcription factors. However, in human breast carcinoma T47D cells lacking the glucocorticoid receptor (GR), but expressing the progesterone receptor (PR), nucleosome B (nuc B) assumes a constitutively hypersensitive chromatin structure. This correlation led us to test the hypothesis that the chromatin structure of nuc B was dependent on GR expression in T47D cells. To examine this possibility, we stably co-transfected the MMTV promoter and the GR into T47D cells that lacked both the GR and the PR. We found that in T47D cells that lack both the GR and the PR or express only the GR, nuc B assumes a constitutively "open" chromatin structure, which allows hormone independent access by restriction endonucleases and transcription factors. These results suggest that in GR(+)/pr(-) T47D cells, the MMTV chromatin structure permits GR transcriptional activation, independent of chromatin remodeling.  (+info)

Reversal of established rat crescentic glomerulonephritis by blockade of macrophage migration inhibitory factor (MIF): potential role of MIF in regulating glucocorticoid production. (68/2860)

Macrophage migration inhibitory factor (MIF) is a potent pro-inflammatory cytokine that also counter-regulates glucocorticoid action. We investigated whether immunoneutralization of MIF could reverse established experimental crescentic glomerulonephritis and if this treatment could modulate endogenous glucocorticoid levels. Accelerated anti-GBM glomerulonephritis was induced in six littermate pairs of rats. Once crescentic disease was established on day 7, one animal in each pair was given a daily injection of neutralizing anti-MIF antibody (Ab) or irrelevant isotype control Ab for 14 days and then killed on day 21. In addition, a group of 6 animals was killed on day 7 of disease without any treatment. Animals receiving the control Ab exhibited a rapidly progressive glomerulonephritis with severe renal injury (proteinuria), loss of renal function (creatinine clearance), anemia, and marked histologic damage (including glomerular crescent formation), compared with animals killed on day 7 without treatment. In contrast, anti-MIF Ab treatment partially reversed the disease by restoring normal renal function and reducing histological damage compared with untreated animals killed on day 7 (p < 0.05). Interestingly, anti-MIF Ab treatment also prevented severe anemia (p < 0.05). Reversal of disease was associated with a significant reduction in leukocyte infiltration and activation and renal interleukin-1 (IL-1) production. Importantly, anti-MIF Ab treatment caused a significant increase in endogenous serum corticosterone levels, which correlated with the reversal of disease parameters. In conclusion, this study has demonstrated that blocking MIF activity can partially reverse established crescentic glomerulonephritis and suggests that MIF operates by both enhancing the cellular immune response and suppressing the endogenous anti-inflammatory glucocorticoid response.  (+info)

Upregulation by glucocorticoids of responses to eosinopoietic cytokines in bone-marrow from normal and allergic mice. (69/2860)

Since the production of eosinopoietic cytokines (GM-CSF, IL-3, IL-5) is inhibited by glucocorticoids, while responsiveness to these cytokines is enhanced in bone-marrow of allergic mice, we studied the ability of glucocorticoids to modulate murine bone-marrow eosinopoiesis. Progenitor (semi-solid) and/or precursor (liquid) cultures were established from bone-marrow of: (a) normal mice; (b) ovalbumin-sensitized and challenged mice or (c) dexamethasone (1-5 mg kg(-1)) injected mice. Cultures were established with GM-CSF (2 ng ml(-1)) or IL-5 (1 ng ml(-1)), respectively, alone or associated with dexamethasone, hydrocortisone or corticosterone. Total myeloid colony numbers, frequency and size of eosinophil colonies, and numbers of eosinophil-peroxidase-positive cells were determined at day 7. In BALB/c mice, dexamethasone (10(-7) M) increased GM-CSF-stimulated myeloid colony formation (P = 0.01), as well as the frequency (P=0.01) and size (P<0.01) of eosinophil colonies. Dexamethasone (10(-7) M) alone had no effect. Dexamethasone (10(-7)-10(-10) M) increased (P<0.002) eosinophil precursor responses to IL-5. Potentiation by dexamethasone was still detectable: (a) on low density, immature, nonadherent BALB/c bone-marrow cells, (b) on bone-marrow from other strains, and (c) on cells from allergic mice. Hydrocortisone and corticosterone had similar effects. Dexamethasone administered in vivo, 24 h before bone-marrow harvest, increased subsequent progenitor responses to GM-CSF (P = 0.001) and precursor responses to IL-5 (P<0.001). These effects were blocked by RU 486 (20 mg kg(-1), orally, 2 h before dexamethasone, or added in vitro at 10 microM, P<0.001). Glucocorticoids, acting in vivo or in vitro, through glucocorticoid receptors, enhance bone-marrow eosinopoiesis in naive and allergic mice.  (+info)

Effect of heparin on antigen-induced airway responses and pulmonary leukocyte accumulation in neonatally immunized rabbits. (70/2860)

The effect of single administrations of aerosolized heparin, low molecular weight heparin (LMWH) and the linear polyanionic molecule, polyglutamic acid (PGA) were examined on antigen-induced airway hyperresponsiveness and leukocyte accumulation in neonatally immunized rabbits. Adult litter-matched NZW rabbits immunized within 24 h of birth with Alternaria tenuis antigen were treated with heparin, LMWH or PGA prior to or following antigen challenge (Alternaria tenuis). For each drug-treated group, a parallel group of rabbits were treated with the appropriate vehicle. In all groups, airway responsiveness to inhaled histamine and bronchoalveolar lavage (BAL) was performed 24 h prior to and following antigen challenge. Basal lung function in terms of resistance (R(L)) and dynamic compliance (C(dyn)) and acute bronchoconstriction was unaltered by pre-treatment with heparin, LMWH or PGA compared to their respective vehicles 24 h prior to or following antigen challenge. In vehicle-treated animals, airway hyperresponsiveness to inhaled histamine was indicated by an increase in the maximal responses of the cumulative concentration-effect curves to histamine and reductions in R(L)PC(50) and C(dyn)PC(35) values 24 h following antigen challenge. Heparin and LMWH given prior to antigen challenge significantly inhibited the development of airway hyperresponsiveness, whereas PGA did not. When given following antigen challenge, all three drugs failed to inhibit the development of airway hyperresponsiveness. Eosinophil and neutrophil cell numbers in BAL fluid increased significantly 24 h following antigen challenge. Heparin, LMWH and PGA failed to inhibit the increase in cell numbers following antigen challenge whether given prior to or following antigen challenge.  (+info)

KGF pretreatment decreases B7 and granzyme B expression and hastens repair in lungs of mice after allogeneic BMT. (71/2860)

We investigated keratinocyte growth factor (KGF) as a pretreatment therapy for idiopathic pneumonia syndrome (IPS) generated as a result of lung damage and allogeneic T cell-dependent inflammatory events occurring in the early peri-bone marrow (BM) transplant (BMT) period. B10.BR (H2(k)) recipient mice were transplanted with C57BL/6 (H2(b)) BM with spleen cells after lethal irradiation with and without cyclophosphamide conditioning with and without subcutaneous KGF pretreatment. KGF-pretreated mice had fewer injured alveolar type II (ATII) cells at the time of BMT and exhibited ATII cell hyperplasia at day 3 post-BMT. The composition of infiltrating cells on day 7 post-BMT was not altered by KGF pretreatment, but the frequencies of cells expressing the T-cell costimulatory molecules B7.1 and B7.2 and mRNA for the cytolysin granzyme B (usually increased in IPS) were decreased by KGF. Sera from KGF-treated mice had increases in the Th2 cytokines interleukin (IL)-4, IL-6, and IL-13 4 days after cessation of KGF administration (i.e., at the time of BMT). These data suggest that KGF hinders IPS by two modes: 1) stimulation of alveolar epithelialization and 2) attenuation of immune-mediated injury as a consequence of failure to upregulate cytolytic molecules and B7 ligand expression and the induction of anti-inflammatory Th2 cytokines in situ.  (+info)

Hypersensitivity reactions in small intestine. I Thymus dependence of experimental 'partial villous atrophy'. (72/2860)

Rats infected with the intestinal nematode Nippostrongylus brasiliensis have crypt hyperplasia with villous atrophy in affected areas of the small intestine. In thymus-deprived (B) rats the course of infection is prolonged but, despite the presence of many worms in the intestinal lumen, villi and crypts appear largely normal. This suggests that the tissue damaged associated with N. brasilliensis infection is caused, not by the worms, but by a local thymus-dependent immune reaction. There is some evidence to implicate lymphocytes rather than antibodies in this reaction. It is already know that T-cell-associated damage to the small intestine, such as occurs in allograft rejection, produces subtotal villous atrophy. The present findings suggest that when T cell react locally with helminth antigens a similar type of damage occurs. The presence of a local cell-mediated immune reaction may be the common factor which causes villous atrophy and crypt hyperplasia in many small intestinal diseases, eg, viral enteritis, giardiasis, cow's milk allergy, and coeliac disease.  (+info)