Tolerance of SP-A-deficient mice to hyperoxia or exercise. (57/953)

Mice carrying a null mutation of the surfactant-associated protein A (SP-A) gene have normal respiratory function, but their surfactant lacks tubular myelin, is sensitive to protein inactivation in vitro, and contains decreased pool sizes of the biophysically active large-aggregate surfactant. We hypothesized that SP-A-deficient mice would be more susceptible to exercise-induced stress and O(2)-induced lung injury. SP-A-(-/-) and SP-A-(+/+) mice tolerated 1 h of swimming or 45 min of running on a treadmill at 15 m/min equivalently, without alterations of the amount of alveolar saturated phosphatidylcholine. After 3 days of hyperoxia, SP-A-(-/-) mice had increased alveolar protein, but pressure-volume curves were not different between groups. Alveolar protein concentration was similarly increased in SP-A-(-/-) and SP-A-(+/+) mice after 4 days of exposure to hyperoxia. Survival rates were similar after 4 days of hyperoxia. SP-A-(-/-) mice were equally tolerant to exercise and 4 days of hyperoxia, indicating that the SP-A-dependent alterations in surfactant did not result in functional deficits.  (+info)

Changes in respiratory control in humans induced by 8 h of hyperoxia. (58/953)

In humans, 8 h of isocapnic hypoxia causes a progressive rise in ventilation associated with increases in the acute ventilatory responses to hypoxia (AHVR) and hypercapnia (AHCVR). To determine whether 8 h of hyperoxia causes the converse of these effects, three 8-h protocols were compared in 14 subjects: 1) poikilocapnic hyperoxia, with end-tidal PO(2) (PET(O(2))) = 300 Torr and end-tidal PCO(2) (PET(CO(2))) uncontrolled; 2) isocapnic hyperoxia, with PET(O(2)) = 300 Torr and PET(CO(2)) maintained at the subject's normal air-breathing level; and 3) control. Ventilation was measured hourly. AHVR and AHCVR were determined before and 0.5 h after each exposure. During isocapnic hyperoxia, after an initial increase, ventilation progressively declined (P < 0.01, ANOVA). After exposure to hyperoxia, 1) AHVR declined (P < 0.05); 2) ventilation at fixed PET(CO(2)) decreased (P < 0.05); and 3) air-breathing PET(CO(2)) increased (P < 0.05); but 4) no significant changes in AHCVR or intercept were demonstrated. In conclusion, 8 h of hyperoxia have some effects opposite to those found with 8 h of hypoxia, indicating that there may be some "acclimatization to hypoxia" at normal sea-level values of PO(2).  (+info)

Response of hepatoma 9618a and normal liver to host carbogen and carbon monoxide breathing. (59/953)

The effects of hyperoxia (induced by host carbogen [95% oxygen/5% carbon dioxide breathing] and hypoxia (induced by host carbon monoxide [CO at 660 ppm] breathing) were compared by using noninvasive magnetic resonance (MR) methods to gain simultaneous information on blood flow/oxygenation and the bioenergetic status of rat Morris H9618a hepatomas. Both carbogen and CO breathing induced a 1.5- to 2-fold increase in signal intensity in blood oxygenation level dependent (BOLD) MR images. This was due to a decrease in deoxyhemoglobin (deoxyHb), which acts as an endogenous contrast agent, caused either by formation of oxyhemoglobin in the case of carbogen breathing, or carboxyhemoglobin with CO breathing. The results were confirmed by observation of similar changes in deoxyHb in arterial blood samples examined ex vivo after carbogen or CO breathing. There was no change in nucleoside triphosphates (NTP)/P(i) in either tumor or liver after CO breathing, whereas NTP/P(i) increased twofold in the hepatoma (but not in the liver) after carbogen breathing. No changes in tumor intracellular pH were seen after either treatment, whereas extracellular pH became more alkaline after CO breathing and more acid after carbogen breathing, respectively. This tumor type and the liver are unaffected by CO breathing at 660 ppm, which implies an adequate oxygen supply.  (+info)

Role of endogenous nitric oxide in hyperoxia-induced airway hyperreactivity in maturing rats. (60/953)

We sought to define the effects of maturation and hyperoxic stress on nitric oxide (NO)-induced modulation of bronchopulmonary responses to stimulation of vagal preganglionic nerve fibers. Experiments were performed on decerebrate, paralyzed, and ventilated rat pups at 6-7 days (n = 21) and 13-15 days of age (n = 23) breathing room air and on rat pups 13-15 days of age (n = 19) after exposure to hyperoxia (>/=95% inspired O(2) fraction for 4-6 days). Total lung resistance (RL) and lung elastance (EL) were measured by body plethysmograph. Vagal stimulation and release of acetylcholine caused a frequency-dependent increase in RL and EL in all animals. The RL response was significantly potentiated in normoxic animals by prior blockade of nitric oxide synthase (NOS) (P < 0.05). Hyperoxic exposure increased responses of RL to vagal stimulation (P < 0.05); however, after hyperoxic exposure, the potentiation of contractile responses by NOS blockade was abolished. The response of EL was potentiated by NOS blockade in the 13- to 15-day-old animals after both normoxic and hyperoxic exposure (P < 0.01). Morphometry revealed no effect of hyperoxic exposure on airway smooth muscle thickness. We conclude that NO released by stimulation of vagal preganglionic fibers modulates bronchopulmonary contractile responses to endogenously released acetylcholine in rat pups. Loss of this modulatory effect of NO could contribute to airway hyperreactivity after prolonged hyperoxic exposure, as may occur in bronchopulmonary dysplasia.  (+info)

Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. (61/953)

PURPOSE: This article assesses the hypothesis that the high blood flow rate and low O(2) extraction associated with the choroidal circulation are metabolically necessary and explores the implications of the spatial relationship between the choroid and the photoreceptors for metabolism in the normal and detached retina. METHODS: The O(2) distribution across the retinal layers was previously measured with O(2)-sensitive microelectrodes in cat. Profiles were fitted to a diffusion model to obtain parameters characterizing photoreceptor O(2) demand. This was a study of simulations based on those parameters. RESULTS: Photoreceptor inner segments have a high O(2) demand (QO(2)), and they are far (20 to 30 microm) from the choroid. These unusual conditions require a large O(2) flux to the inner segments, which in turn requires high choroidal oxygen tension (PO(2)), high choroidal venous saturation (ScvO(2)), low choroidal O(2) oxygen extraction per unit volume of blood, and a choroidal blood flow (ChBF) of at least 500 ml/100 g-min. Movement of the inner segments further from the choroid, which occurs in a retinal detachment, severely reduces the ability of the inner segments to obtain O(2), even for detachment heights as small as 100 microm. Depending on detachment height and assumptions about choroidal and inner retinal PO(2) during elevation of inspired O(2) (hyperoxia), hyperoxia is predicted to partially or fully restore photoreceptor QO(2) during a detachment. CONCLUSIONS: The choroid is not overperfused, but requires a high flow rate to satisfy the normal metabolic demand of the retina. Because the oxygenation of the photoreceptors is barely adequate under normal conditions, detachment has serious metabolic consequences. Hyperoxia is predicted to have clinical benefit during detachment.  (+info)

Up-regulation of Na,K-ATPase beta 1 transcription by hyperoxia is mediated by SP1/SP3 binding. (62/953)

The sodium pump, Na,K-ATPase, is an important protein for maintaining intracellular ion concentration, cellular volume, and ion transport and is regulated both transcriptionally and post-transcriptionally. We previously demonstrated that hyperoxia increased Na,K-ATPase beta(1) gene expression in Madin-Darby canine kidney (MDCK) cells. In this study, we identify a DNA element necessary for up-regulation of the Na,K-ATPase beta(1) transcription by hyperoxia and evaluate the nuclear proteins responsible for this up-regulation. Transient transfection experiments in MDCK cells using sequential 5'-deletions of the rat Na,K-ATPase beta(1) promoter-luciferase fusion gene demonstrated promoter activation by hyperoxia between -102 and +151. The hyperoxia response was localized to a 7-base pair region between -62 and -55, which contained a GC-rich region consistent with a consensus sequence for the SP1 family, that was sufficient for up-regulation by hyperoxia. This GC element exhibited both basal and hyperoxia-induced promoter activity and bound both transcription factors SP1 and SP3 in electrophoretic mobility shift assays. In addition, electrophoretic mobility shift assays demonstrated increased binding of SP1/SP3 in cells exposed to hyperoxia while mutation of this element eliminated protein binding. Other GC sites within the proximal promoter also demonstrated up-regulation of transcription by hyperoxia, however, the site at -55 had higher affinity for SP proteins.  (+info)

IL-13 stimulates vascular endothelial cell growth factor and protects against hyperoxic acute lung injury. (63/953)

Hyperoxia is an important cause of acute lung injury. To determine whether IL-13 is protective in hyperoxia, we compared the survival in 100% O(2) of transgenic mice that overexpress IL-13 in the lung and of nontransgenic littermate controls. IL-13 enhanced survival in 100% O(2). One hundred percent of nontransgenic mice died in 4-5 days, whereas 100% of IL-13-overexpressing mice lived for more than 7 days, and many lived 10-14 days. IL-13 also stimulated VEGF accumulation in mice breathing room air, and it interacted with 100% (2) to increase VEGF accumulation further. The 164-amino acid isoform was the major VEGF moiety in bronchoalveolar lavage from transgenic mice in room air, whereas the 120- and 188-amino acid isoforms accumulated in these mice during hyperoxia. In addition, antibody neutralization of VEGF decreased the survival of IL-13-overexpressing mice in 100% (2). These studies demonstrate that IL-13 has protective effects in hyperoxic acute lung injury. They also demonstrate that IL-13, alone and in combination with 100% (2), stimulates pulmonary VEGF accumulation, that this stimulation is isoform-specific, and that the protective effects of IL-13 are mediated, in part, by VEGF.  (+info)

Cardiovascular effects of 8 h of isocapnic hypoxia with and without beta-blockade in humans. (64/953)

This study seeks to confirm the progressive changes in cardiac output and heart rate previously reported with 8 h exposures to constant hypoxia, and to examine the role of sympathetic mechanisms in generating these changes. Responses of ten subjects to four 8 h protocols were compared: (1) air breathing with placebo; (2) isocapnic hypoxia (end-tidal PO2 = 50 mm Hg) with placebo; (3) isocapnic hypoxia with beta-blockade; and (4) air breathing with beta -blockade. Regular measurements of heart rate and cardiac output (using ultrasonography and N2O rebreathing techniques) were made with subjects seated in the upright position. The sensitivity of heart rate to rapid variations in hypoxia (GHR) and heart rate in the absence of hypoxia were measured at times 0, 4 and 8 h. No significant progressive effect of hypoxia on cardiac output was detected. There was a gradual rise in heart rate with hypoxia of 11+/-2 beats min(-1) in the placebo protocol and of 10+/-2 beats min(-1) in the beta-blockade protocol over 8 h, compared to the air breathing protocols. The rise in heart rate was progressive (P<0.001) and accompanied by progressive increases in both GHR (P<0.001) and heart rate measured in the absence of hypoxia (P<0.05). No significant effect of beta-blockade was detected on any of these progressive changes. We conclude that sympathetic mechanisms that act via beta -receptors play little role in the progressive changes in heart rate observed over 8 h of moderate hypoxia.  (+info)