Interaction of CYP11B1 (cytochrome P-45011 beta) with CYP11A1 (cytochrome P-450scc) in COS-1 cells. (33/2276)

The interactions of CYP11B1 (cytochrome P-45011beta), CYP11B2 (cytochrome P-450aldo) and CYP11A1 (cytochrome P-450scc) were investigated by cotransfection of their cDNA into COS-1 cells. The effect of CYP11A1 on CYP11B isozymes was examined by studying the conversion of 11-deoxycorticosterone to corticosterone, 18-hydroxycorticosterone and aldosterone. It was shown that when human or bovine CYP11B1 and CYP11A1 were cotransfected they competed for the reducing equivalents from the limiting source contained in COS-1 cells; this resulted in a decrease of the CYP11B activities without changes in the product formation patterns. The competition of human CYP11A1 with human CYP11B1 and CYP11B2 could be diminished with excess expression of bovine adrenodoxin. However, the coexpression of bovine CYP11B1 and CYP11A1 in the presence of adrenodoxin resulted in a stimulation of 11beta-hydroxylation activity of CYP11B1 and in a decrease of the 18-hydroxycorticosterone and aldosterone formation. These results suggest that the interactions of CYP11A1 with CYP11B1 and CYP11B2 do not have an identical regulatory function in human and in bovine adrenal tissue.  (+info)

A new UV method for serum gamma-glutamyltransferase assay using recombinant 4-aminobenzoate hydroxylase as a coupling enzyme. (34/2276)

4-aminobenzoate hydroxylase (4ABH) is a flavin-dependent monooxygenase that catalyzes the decarboxylative hydroxylation of 4-aminobenzoate to 4-hydroxyaniline. For use as a clinical reagent, the gene encoding 4ABH from Agaricus bisporus was cloned by the RACE method. Also, the cDNA encoding 4ABH was expressed in Escherichia coli cells as a fusion protein with glutathione S-transferase (GST). The expressed GST-4ABH fusion protein (recombinant 4ABH) in the soluble fraction exhibits decarboxylative hydroxylation and additional NADH oxidation activities.We investigated a new ultraviolet spectrometric method for determining serum gamma-glutamyltransferase (gamma-GT) using recombinant 4ABH as a coupling enzyme. The principle of the method is as follows. Using gamma-glutamyl-3-choloro-4-aminobenzoate (L-gamma-glu-PAClBA) and glycylglycine as the donor and acceptor substrates, 3-choloro-4-aminobenzoate (PAClBA) is formed by the catalysis of serum gamma-GT. PAClBA is stoichiometrically converted to 3-choloro-4-hydroxyaniline (PHClA) and NAD(+) by 4ABH and NADH. However, NADH oxidation results in a high reagent blank, which is considered as a drawback for use as a clinical reagent. Using recombinant 4ABH, we examined the effects of pH and detergents on these two activities, and found that several detergents suppress the additional NADH oxidation activity with little or no effect on hydroxylation activity. The results indicate a promising approach to establishing an ultraviolet spectrophotometric method for determining serum gamma-GT activity using L-gamma-glu-PAClBA as the donor substrate and recombinant 4ABH as a coupling enzyme.  (+info)

Catalytic properties of polymorphic human cytochrome P450 1B1 variants. (35/2276)

Four polymorphic human cytochrome P450 (CYP) 1B1 allelic variants, namely Arg48,Ala119,Leu432,Asn453, Arg48,Ser119,Leu432,Asn453, Arg48, Ala119,Val432,Asn-453 and Arg48,Ser119,Val432,Asn453, were expressed in Escherichia coli together with human NADPH-P450 reductase and the recombinant proteins (in bacterial membranes) were used to assess whether CYP1B1 polymorphisms affect catalytic activities towards a variety of P450 substrates, including diverse procarcinogens and steroid hormones. Activities for activation of 19 procarcinogens to DNA-damaging products by these four CYP1B1 variants in a Salmonella typhimurium NM2009 umu response system were found to be essentially similar, except that a Arg48, Ser119,Leu432,Asn453 variant was slightly more active (1.2- to 1.5-fold) than the other three CYP1B1 enzymes in catalyzing activation of (+)- and (-)-benzo[a]pyrene-7, 8-diols, 7,12-dimethylbenz[a]anthracene-3,4-diol, benzo[g]chrysene-11,12-diol, benzo[b]fluoranthene-9,10-diol, 2-amino-3,5-dimethylimidazo[4,5-f]quinoline, 2-amino-3-methylimidazo[4,5-f]quinoline and 2-aminofluorene. Kinetic analysis of 17beta-estradiol hydroxylation showed that V(max) values for 4-hydroxylation ranged between 0.9 and 1.5 nmol/min/nmol P450 for 4-hydroxylation and 0.3 and 0.6 nmol/min/nmol P450 for 2-hydroxylation in these CYP1B1 variants, with K(m) values ranging from 1 to 9 microM. Interestingly, the ratio of product formation of 4-hydroxyestradiol to 2-hydroxyestradiol was higher for the Val432 variants of CYP1B1 variants than the Leu432 variants of the enzyme. The same trend was noted in the ratio of estrone 4-hydroxylation to estrone 2-hydroxylation catalyzed by CYP1B1 variants. Mutation in the CYP1B1 genes also affected the K(m) and V(max) values in the 6beta-hydroxylation of testosterone and 6beta- and 16alpha-hydroxylation of progesterone. These results indicate that the polymorphisms in the human CYP1B1 gene cause some alterations in catalytic function towards procarcinogens and steroid hormones and thus may make some contribution to susceptibilities of individuals towards mammary and lung cancers in humans.  (+info)

Evidence for 4-hydroxyproline in viral proteins. Characterization of a viral prolyl 4-hydroxylase and its peptide substrates. (36/2276)

4-Hydroxyproline, the characteristic amino acid of collagens and collagen-like proteins in animals, is also found in certain proline-rich proteins in plants but has been believed to be absent from viral and bacterial proteins. We report here on the cloning and characterization from a eukaryotic algal virus, Paramecium bursaria Chlorella virus-1, of a 242-residue polypeptide, which shows distinct sequence similarity to the C-terminal half of the catalytic alpha subunits of animal prolyl 4-hydroxylases. The recombinant polypeptide, expressed in Escherichia coli, was found to be a soluble monomer and to hydroxylate both (Pro-Pro-Gly)(10) and poly(L-proline), the standard substrates of animal and plant prolyl 4-hydroxylases, respectively. Synthetic peptides such as (Pro-Ala-Pro-Lys)(n), (Ser-Pro-Lys-Pro-Pro)(5), and (Pro-Glu-Pro-Pro-Ala)(5) corresponding to proline-rich repeats coded by the viral genome also served as substrates. (Pro-Ala-Pro-Lys)(10) was a particularly good substrate, with a K(m) of 20 microM. The prolines in both positions in this repeat were hydroxylated, those preceding the alanines being hydroxylated more efficiently. The data strongly suggest that P. bursaria Chlorella virus-1 expresses proteins in which many prolines become hydroxylated to 4-hydroxyproline by a novel viral prolyl 4-hydroxylase.  (+info)

Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. (37/2276)

A central question in lignin biosynthesis is how guaiacyl intermediates are hydroxylated and methylated to the syringyl monolignol in angiosperms. To address this question, we cloned cDNAs encoding a cytochrome P450 monooxygenase (LsM88) and a caffeate O-methyltransferase (COMT) from sweetgum (Liquidambar styraciflua) xylem. Mass spectrometry-based functional analysis of LsM88 in yeast identified it as coniferyl aldehyde 5-hydroxylase (CAld5H). COMT expressed in Escherichia coli methylated 5-hydroxyconiferyl aldehyde to sinapyl aldehyde. Together, CAld5H and COMT converted coniferyl aldehyde to sinapyl aldehyde, suggesting a CAld5H/COMT-mediated pathway from guaiacyl to syringyl monolignol biosynthesis via coniferyl aldehyde that contrasts with the generally accepted route to sinapate via ferulate. Although the CAld5H/COMT enzyme system can mediate the biosynthesis of syringyl monolignol intermediates through either route, k(cat)/K(m) of CAld5H for coniferyl aldehyde was approximately 140 times greater than that for ferulate. More significantly, when coniferyl aldehyde and ferulate were present together, coniferyl aldehyde was a noncompetitive inhibitor (K(i) = 0.59 microM) of ferulate 5-hydroxylation, thereby eliminating the entire reaction sequence from ferulate to sinapate. In contrast, ferulate had no effect on coniferyl aldehyde 5-hydroxylation. 5-Hydroxylation also could not be detected for feruloyl-CoA or coniferyl alcohol. Therefore, in the presence of coniferyl aldehyde, ferulate 5-hydroxylation does not occur, and the syringyl monolignol can be synthesized only from coniferyl aldehyde. Endogenous coniferyl, 5-hydroxyconiferyl, and sinapyl aldehydes were detected, consistent with in vivo operation of the CAld5H/COMT pathway from coniferyl to sinapyl aldehydes via 5-hydroxyconiferyl aldehyde for syringyl monolignol biosynthesis.  (+info)

Production in vitro by the cytochrome P450 CYP94A1 of major C18 cutin monomers and potential messengers in plant-pathogen interactions: enantioselectivity studies. (38/2276)

The major C(18) cutin monomers are 18-hydroxy-9,10-epoxystearic and 9,10,18-trihydroxystearic acids. These compounds are also known messengers in plant-pathogen interactions. We have previously shown that their common precursor 9,10-epoxystearic acid was formed by the epoxidation of oleic acid in Vicia sativa microsomes (Pinot, Salaun, Bosch, Lesot, Mioskowski and Durst (1992) Biochem. Biophys. Res. Commun. 184, 183-193). Here we determine the chirality of the epoxide produced as (9R,10S) and (9S,10R) in the ratio 90:10 respectively. We further show that microsomes from yeast expressing the cytochrome P450 CYP94A1 are capable of hydroxylating the methyl terminus of 9,10-epoxystearic and 9,10-dihydroxystearic acids in the presence of NADPH to form the corresponding 18-hydroxy derivatives. The reactions were not catalysed by microsomes from yeast transformed with a void plasmid or in absence of NADPH. After incubation of a synthetic racemic mixture of 9,10-epoxystearic acid with microsomes of yeast expressing CYP94A1, the chirality of the residual epoxide was shifted to 66:34 in favour of the (9S,10R) enantiomer. Both enantiomers were incubated separately and V(max)/K(m) values of 16 and 3.42 ml/min per nmol of P450 for (9R, 10S) and (9S,10R) respectively were determined, demonstrating that CYP94A1 is enantioselective for the (9R,10S) enantiomer, which is preferentially formed in V. sativa microsomes. Compared with the epoxide, the diol 9,10-dihydroxystearic acid was a much poorer substrate for the omega-hydroxylase, with a measured V(max)/K(m) of 0.33 ml/min per nmol of P450. Our results indicate that the activity of CYP94A1 is strongly influenced by the stereochemistry of the 9, 10-epoxide and the nature of substituents on carbons 9 and 10, with V(max)/K(m) values for epoxide>>oleic acid>diol.  (+info)

The elimination profiles of oxaprozin in equine urine and serum after a 4.8-g dose. (39/2276)

A method for the extraction of oxaprozin from equine urine and serum and its quantitation by high-performance liquid chromatography-ultraviolet detection is presented. Confirmation of oxaprozin in postadministration extracts was accomplished by gas chromatographic- mass spectrometric analysis of methylated extracts or liquid chromatography with tandem mass spectrometry daughter ion mass spectra of underivatized extracts. Daypro, a formulation of oxaprozin, was administered orally at a dose of 4.8 g to four standardbred mares. Urine and serum samples were collected to 120 h postadministration. Base hydrolysis of equine urine before extraction resulted in an increase in the amount of oxaprozin measured, an indication of conjugation by ester formation. The urinary elimination profiles of each horse were significantly different from each other with more than one peak in oxaprozin concentration before the 29-31-h collection time. After this collection time, the differences between the oxaprozin urinary concentrations of each horse follow each other more closely. The peak average urinary concentrations of oxaprozin were 25.1 and 17.0 microg/mL at collection times of 8-10 and 18-22 h, respectively. The latest detection of oxaprozin in urine was at the last collection time of 119-121 h postadministration at a concentration close to the detection limit of approximately 0.1 microg/mL. The serum elimination profiles do not vary between horses as much as the urinary elimination profiles. The peak average serum concentration was 49.0 microg/mL at a collection time of 6 h postadministration. The latest detection was at the last collection time of 120 h. Oxaprozin is metabolized in the horse by hydroxylation. Two major urinary metabolites were isolated and identified as hydroxylated oxaprozin. The two urinary metabolites were isolated from equine postadministration urine and analyzed by mass spectrometry and proton nuclear magnetic resonance spectroscopy, which showed that the hydroxylation had occurred at the para positions of the two aromatic rings.  (+info)

Cutting edge: N-hydroxy peptides: a new class of TCR antagonists. (40/2276)

TCR antagonists are altered T cell epitopes that specifically inactivate T cells. Commonly, they are derived from agonists by amino acid side chain replacement at positions accessible to the TCR. In this paper we report for the first time that a main chain N-hydroxylation, which is not exposed at the surface of the MHC peptide complex, renders an agonist into an antagonist. These mimotopes are a new, yet undescribed class of TCR antagonists. The antagonists are about 100 times more potent than an unrelated peptide that competes for binding to the MHC molecule. The novel main chain modification enhances biostability and maintains side chain constitution and thus opens new prospects for the use of TCR antagonists in the treatment of pathological immune reactions.  (+info)