Essential hydrophilic carboxyl-terminal regions including cysteine residues of the yeast stretch-activated calcium-permeable channel Mid1. (41/460)

The yeast Saccharomyces cerevisiae MID1 gene encodes a stretch-activated Ca(2+)-permeable nonselective cation channel composed of 548 amino acid residues. A physiological role of the Mid1 channel is known to maintain the viability of yeast cells exposed to mating pheromone, but its structural basis remains to be clarified. To solve this problem, we identified the mutation sites of mid1 mutant alleles generated by in vivo ethyl methanesulfonate mutagenesis and found that two mid1 alleles have nonsense mutations at the codon for Trp(441), generating a truncated Mid1 protein lacking two-thirds of the intracellular carboxyl-terminal region from Asn(389) to Thr(548). In vitro random mutagenesis with hydroxylamine also showed that the carboxyl-terminal region is essential. To identify the functional portion of the carboxyl-terminal region in detail, we performed a progressive carboxyl-terminal truncation followed by functional analyses and found that the truncated protein produced from the mid1 allele bearing the amber mutation at the codon for Phe(522) (F522Am) complemented the mating pheromone-induced death phenotype of the mid1 mutant and increased its Ca(2+) uptake activity to a wild-type level, whereas N521Am did not. This result indicates that the carboxyl-terminal domain spanning from Asn(389) to Asn(521) is required for Mid1 function. Interestingly, this domain is cysteine-rich, and alanine-scanning mutagenesis revealed that seven out of 10 cysteine residues are unexchangeable. These results clearly indicate that the carboxyl-terminal domain including the cysteine residues is important for Mid1 function.  (+info)

Structural requirements for palmitoylation of surfactant protein C precursor. (42/460)

Pulmonary surfactant protein C (SP-C) propeptide (proSP-C) is a type II transmembrane protein that is palmitoylated on two cysteines adjacent to its transmembrane domain. To study the structural requirements for palmitoylation of proSP-C, His-tagged human proSP-C and mutant forms were expressed in Chinese hamster ovary cells and analysed by metabolic labelling with [3H]palmitate. Mutations were made in the amino acid sequence representing mature SP-C, as deletion of the N- and C-terminal propeptide parts showed that this sequence by itself could already be palmitoylated. Substitution of the transmembrane domain by an artificial transmembrane domain had no effect on palmitoylation. However, an inverse correlation was found between palmitoylation of proSP-C and the number of amino acids present between the cysteines and the transmembrane domain. Moreover, substitution by alanines of amino acids localized on the N-terminal side of the cysteines had drastic effects on palmitoylation, probably as a result of the removal of hydrophobic amino acids. These data, together with the observation that substitution by alanines of the amino acids localized between the cysteines and the transmembrane domain had no effect on palmitoylation, suggest that the palmitoylation of proSP-C depends not on specific sequence motifs, but more on the probability that the cysteine is in the vicinity of the membrane surface. This is probably determined not only by the number of amino acids between the cysteines and the transmembrane domain, but also by the hydrophobic interaction of the N-terminus with the membrane. This may also be the case for the palmitoylation of other transmembrane proteins.  (+info)

Enterococcus faecalis acetoacetyl-coenzyme A thiolase/3-hydroxy-3-methylglutaryl-coenzyme A reductase, a dual-function protein of isopentenyl diphosphate biosynthesis. (43/460)

Many bacteria employ the nonmevalonate pathway for synthesis of isopentenyl diphosphate, the monomer unit for isoprenoid biosynthesis. However, gram-positive cocci exclusively use the mevalonate pathway, which is essential for their growth (E. I. Wilding et al., J. Bacteriol. 182:4319-4327, 2000). Enzymes of the mevalonate pathway are thus potential targets for drug intervention. Uniquely, the enterococci possess a single open reading frame, mvaE, that appears to encode two enzymes of the mevalonate pathway, acetoacetyl-coenzyme A thiolase and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Western blotting revealed that the mvaE gene product is a single polypeptide in Enterococcus faecalis, Enterococcus faecium, and Enterococcus hirae. The mvaE gene was cloned from E. faecalis and was expressed with an N-terminal His tag in Escherichia coli. The gene product was then purified by nickel affinity chromatography. As predicted, the 86.5-kDa mvaE gene product catalyzed both the acetoacetyl-CoA thiolase and HMG-CoA reductase reactions. Temperature optima, DeltaH(a) and K(m) values, and pH optima were determined for both activities. Kinetic studies of acetoacetyl-CoA thiolase implicated a ping-pong mechanism. CoA acted as an inhibitor competitive with acetyl-CoA. A millimolar K(i) for a statin drug confirmed that E. faecalis HMG-CoA reductase is a class II enzyme. The oxidoreductant was NADP(H). A role for an active-site histidine during the first redox step of the HMG-CoA, reductase reaction was suggested by the ability of diethylpyrocarbonate to block formation of mevalonate from HMG-CoA, but not from mevaldehyde. Sequence comparisons with other HMG-CoA reductases suggest that the essential active-site histidine is His756. The mvaE gene product represents the first example of an HMG-CoA reductase fused to another enzyme.  (+info)

Protein film voltammetry reveals distinctive fingerprints of nitrite and hydroxylamine reduction by a cytochrome C nitrite reductase. (44/460)

The cytochrome c nitrite reductases perform a key step in the biological nitrogen cycle by catalyzing the six-electron reduction of nitrite to ammonium. Graphite electrodes painted with Escherichia coli cytochrome c nitrite reductase and placed in solutions containing nitrite (pH 7) exhibit large catalytic reduction currents during cyclic voltammetry at potentials below 0 V. These catalytic currents were not observed in the absence of cytochrome c nitrite reductase and were shown to originate from an enzyme film engaged in direct electron exchange with the electrode. The catalytic current-potential profiles observed on progression from substrate-limited to enzyme-limited nitrite reduction revealed a fingerprint of catalytic behavior distinct from that observed during hydroxylamine reduction, the latter being an alternative substrate for the enzyme that is reduced to ammonium in a two electron process. Cytochrome c nitrite reductase clearly interacts differently with these two substrates. However, similar features underlie the development of the voltammetric response with increasing nitrite or hydroxylamine concentration. These features are consistent with coordinated two-electron reduction of the active site and suggest that the mechanisms for reduction of both substrates are underpinned by common rate-defining processes.  (+info)

Geldanamycin leads to superoxide formation by enzymatic and non-enzymatic redox cycling. Implications for studies of Hsp90 and endothelial cell nitric-oxide synthase. (45/460)

The ansamycin antibiotic geldanamycin has frequently been used as an inhibitor of heat shock protein 90 (Hsp90), and this agent has been widely employed as a probe to examine the interactions of Hsp90 with endothelial nitric-oxide synthase. Geldanamycin contains a quinone group, which may participate in redox cycling. When geldanamycin was exposed to the flavin-containing enzyme cytochrome P-450 reductase, both semiquinone and superoxide (O(2)(*)(-)) radicals were detected using electron spin resonance. The treatment of endothelial cells with geldanamycin resulted in a dramatic increase in O(2)(*)(-) generation, which was independent of endothelial nitric-oxide synthase, because it was not inhibited by N-nitro-l-arginine methyl ester and also occurred in vascular smooth muscle cells. Diphenylene iodinium inhibited this increase in O(2)(*)(-) by 50%, suggesting that flavin-containing enzymes are involved in geldanamycin-induced O(2)(*)(-) generation. In the absence of cells, geldanamycin directly oxidized ascorbate, consumed oxygen, and produced O(2)(*)(-). Geldanamycin decreased the bioavailable nitric oxide generated by 3,4-dihydrodiazete 1,2-dioxide in smooth muscle cells by 50%, whereas pretreatment with superoxide dismutase inhibited the effect of geldanamycin. These findings demonstrate that geldanamycin generates O(2)(*)(-), which scavenges nitric oxide, leading to loss of its bioavailability. This effect is independent of the inhibition of Hsp90 and indicates that geldanamycin cannot be used as a specific inhibitor of Hsp90. In light of these findings, the studies using geldanamycin as an inhibitor of Hsp90 should be interpreted with caution.  (+info)

Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species. (46/460)

GAP-43 (neuromodulin) is a protein kinase C substrate that is abundant in developing and regenerating neurons. Thioester-linked palmitoylation at two cysteines near the GAP-43 N terminus has been implicated in directing membrane binding. Here, we use mass spectrometry to examine the stoichiometry of palmitoylation and the molecular identity of the fatty acid(s) attached to GAP-43 in vivo. GAP-43 expressed in either PC12 or COS-1 cells was acetylated at the N-terminal methionine. Approximately 35% of the N-terminal GAP-43 peptides were also modified by palmitate and/or stearate on Cys residues. Interestingly, a variety of acylated species was detected, in which one of the Cys residues was acylated by either palmitate or stearate, or both Cys residues were acylated by palmitates or stearates or a combination of palmitate and stearate. Depalmitoylation of membrane-bound GAP-43 did not release the protein from the membrane, implying that additional forces function to maintain membrane binding. Indeed, mutation of four basic residues within the N-terminal domain of GAP-43 dramatically reduced membrane localization of GAP-43 without affecting palmitoylation. These data reveal the heterogeneous nature of S-acylation in vivo and illustrate the power of mass spectrometry for identification of key regulatory protein modifications.  (+info)

Autocatalytic processing of gamma-glutamyltranspeptidase. (47/460)

gamma-Glutamyltranspeptidase is the key enzyme in glutathione metabolism, and we previously presented evidence suggesting that it belongs to the N-terminal nucleophile hydrolase superfamily. Enzymatically active gamma-glutamyltranspeptidase, which consists of one large subunit and one small subunit, is generated from an inactive common precursor through post-translational proteolytic processing. The processing mechanism for gamma-glutamyltranspeptidase of Escherichia coli K-12 has been analyzed by means of in vitro studies using purified precursors. Here we show that the processing of a precursor of gamma-glutamyltranspeptidase is an intramolecular autocatalytic event and that the catalytic nucleophile for the processing reaction is the oxygen atom of the side chain of Thr-391 (N-terminal residue of the small (beta) subunit), which is also the nucleophile for the enzymatic reaction.  (+info)

Down-modulation of nuclear localisation and pro-fibrogenic effect of 4-hydroxy-2,3-nonenal by thiol- and carbonyl-reagents. (48/460)

Among the oxidative breakdown products of omega-6 unsaturated fatty acids, the aldehyde 4-hydroxy-2,3-nonenal (HNE) is receiving increasing attention for its potential pathophysiological implication, which at least partly lies on the demonstrated ability to modulate gene expression of a number of genes. Here we show that a marked down-modulation of HNE nuclear localisation in cells of a macrophage line (J774-A1) can be afforded by treatment with sulfydryl and carbonyl reagents without significantly interfering with cell viability. As regards the addition of thiol-group reagents to the cell suspension, N-ethylmaleimide (NEM) led to a sustained decrease of HNE nuclear localisation, while 4-(chloromercuri)-benzene-sulfonic acid (PCMBS) gave a similar but more transient effect. Hydroxylamine (HYD), a carbonyl-group reagent, was also able to inhibit HNE nuclear localisation. The actual efficacy of the inhibitors used was then tested on the HNE-induced stimulation of transforming growth factor beta1 (TGFbeta1) production by J774-A1 cells. Indeed, the thiol reagents NEM and PCMBS, both markedly down-modulating HNE nuclear localisation, were able to inhibit HNE-induced increase of TGFbeta1 protein synthesis. The carbonyl reagent HYD was less effective on this respect, producing strong but incomplete protection against HNE-induced TGFbeta1 increase. Taken together, the results indicate that sulfydryl groups are involved in the process of HNE cellular internalisation, while both sulfydryl and carbonyl groups are involved in the process of HNE nuclear translocation, and consequently in the modulation of gene expression by the aldehyde. Further, an actual demonstration is provided that HNE-induced effect on gene regulation can be efficiently counteracted by suitable interference with HNE biochemistry.  (+info)