Arg-425 of the citrate transporter CitP is responsible for high affinity binding of di- and tricarboxylates. (33/964)

The citrate transporter of Leuconostoc mesenteroides (CitP) catalyzes exchange of divalent anionic citrate from the medium for monovalent anionic lactate, which is an end product of citrate degradation. The exchange generates a membrane potential and thus metabolic energy for the cell. The mechanism by which CitP transports both a divalent and a monovalent substrate was the subject of this investigation. Previous studies indicated that CitP is specific for substrates containing a 2-hydroxycarboxylate motif, HO-CR(2)-COO(-). CitP has a high affinity for substrates that have a "second" carboxylate at one of the R groups, such as divalent citrate and (S)-malate (Bandell, M., and Lolkema, J. S. (1999) Biochemistry 38, 10352-10360). Monovalent anionic substrates that lack this second carboxylate were found to bind with a low affinity. In the present study we have constructed site-directed mutants, changing Arg-425 into a lysine or a cysteine residue. By using two substrates, i.e. (S)-malate and 2-hydroxyisobutyrate, the substrate specificity of the mutants was analyzed. In both mutants the affinity for divalent (S)-malate was strongly decreased, whereas the affinity for monovalent 2-hydroxyisobutyrate was not. The largest effect was seen when the arginine was changed into the neutral cysteine, which reduced the affinity for (S)-malate over 50-fold. Chemical modification of the R425C mutant with the sulfhydryl reagent 2-aminoethyl methanethiosulfonate, which restores the positive charge at position 425, dramatically reactivated the mutant transporter. The R425C and R425K mutants revealed a substrate protectable inhibition by other sulfhydryl reagents and the lysine reagent 2,4,6-trinitrobenzene sulfonate, respectively. It is concluded that Arg-425 complexes the charged carboxylate present in divalent substrates but that is absent in monovalent substrates, and thus plays an important role in the generation of the membrane potential.  (+info)

Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha. (34/964)

Ralstonia eutropha H16 degraded (mobilized) previously accumulated poly(3-hydroxybutyrate) (PHB) in the absence of an exogenous carbon source and used the degradation products for growth and survival. Isolated native PHB granules of mobilized R. eutropha cells released 3-hydroxybutyrate (3HB) at a threefold higher rate than did control granules of nonmobilized bacteria. No 3HB was released by native PHB granules of recombinant Escherichia coli expressing the PHB biosynthetic genes. Native PHB granules isolated from chromosomal knockout mutants of an intracellular PHB (i-PHB) depolymerase gene of R. eutropha H16 and HF210 showed a reduced but not completely eliminated activity of 3HB release and indicated the presence of i-PHB depolymerase isoenzymes.  (+info)

Characterization, seasonal occurrence, and diel fluctuation of poly(hydroxyalkanoate) in photosynthetic microbial mats. (35/964)

In situ poly(hydroxyalkanoate) (PHA) levels and repeating-unit compositions were examined in stratified photosynthetic microbial mats from Great Sippewissett Salt Marsh, Mass., and Ebro Delta, Spain. Unlike what has been observed in pure cultures of phototrophic bacteria, the prevalence of hydroxyvalerate (HV) repeating units relative to hydroxybutyrate (HB) repeating units was striking. In the cyanobacteria-dominated green material of Sippewissett mats, the mole percent ratio of repeating units was generally 1HB:1HV. In the purple sulfur bacteria-dominated pink material the relationship was typically 1HB:2HV. In Sippewissett mats, PHA contributed about 0.5 to 1% of the organic carbon in the green layer and up to 6% in the pink layer. In Ebro Delta mats, PHA of approximately 1HB:2HV-repeating-unit distribution contributed about 2% of the organic carbon of the composite photosynthetic layers (the green and pink layers were not separated). Great Sippewissett Salt Marsh mats were utilized for more extensive investigation of seasonal, diel, and exogenous carbon effects. When the total PHA content was normalized to organic carbon, there was little seasonal variation in PHA levels. However, routine daily variation was evident at all sites and seasons. In every case, PHA levels increased during the night and decreased during the day. This phenomenon was conspicuous in the pink layer, where PHA levels doubled overnight. The daytime declines could be inhibited by artificial shading. Addition of exogenous acetate, lactate, and propionate induced two- to fivefold increases in the total PHA levels when applied in the daylight but had no effect when applied at night. The distinct diel pattern of in situ PHA accumulation at night appears to be related, in some phototrophs, to routine dark energy metabolism and is not influenced by the availability of organic nutrients.  (+info)

The effect of sublethal doses of rifampin on the sporulation of Clostridium botulinum. (36/964)

Sublethal doses of rifampin (0-005 mug/ml), added to vegetatively growing cultures of a sporogenic mutant of Clostridium botulinum at inoculation time or after 4 h, resulted in a decrease of growth and in blockage of spore formation. But when rifampin was added 6 to 24 h after inoculation, normal growth and sporulation occurred, indicating that the time of addition was critical and that rifampin was most effective on rapidly dividing, exponential-phase cells. Ultrastructural studies showed that when rifampin was added at the time of inoculation, endospore development was blocked at stage III. During subsequent incubation (greater than 10 h) the cells lost their rigidity, and lysis of the mother cell was followed by that of the forespore. When the cultures were treated with rifampin at 4 h, about 40% of the cells were blocked at stage III and about 60% reached stages IV and V. Some showed excessive elongation and contained developing spores at each pole. They appeared to be derived from two daughter cells unable to form a division septum because of a specific inhibitory effect of rifampin on division. It would seem, therefore, that two daughter cells which are genetically coded to form endospores will do so irrespective of the development of a division septum, and the spores are formed at the 'old' polar regions.  (+info)

Cloning of an intracellular Poly[D(-)-3-Hydroxybutyrate] depolymerase gene from Ralstonia eutropha H16 and characterization of the gene product. (37/964)

An intracellular poly[D(-)-3-hydroxybutyrate] (PHB) depolymerase gene (phaZ) has been cloned from Ralstonia eutropha H16 by the shotgun method, sequenced, and characterized. Nucleotide sequence analysis of a 2.3-kbp DNA fragment revealed an open reading frame of 1,260 bp, encoding a protein of 419 amino acids with a predicted molecular mass of 47,316 Da. The crude extract of Escherichia coli containing the PHB depolymerase gene digested artificial amorphous PHB granules and released mainly oligomeric D(-)-3-hydroxybutyrate, with some monomer. The gene product did not hydrolyze crystalline PHB or freeze-dried artificial amorphous PHB granules. The deduced amino acid sequence lacked sequence corresponding to a classical lipase box, Gly-X-Ser-X-Gly. The gene product was expressed in R. eutropha cells concomitant with the synthesis of PHB and localized in PHB granules. Although a mutant of R. eutropha whose phaZ gene was disrupted showed a higher PHB content compared to the wild type in a nutrient-rich medium, it accumulated PHB as much as the wild type did in a nitrogen-free, carbon-rich medium. These results indicate that the cloned phaZ gene encodes an intracellular PHB depolymerase in R. eutropha.  (+info)

Proteome analysis of metabolically engineered Escherichia coli producing Poly(3-hydroxybutyrate). (38/964)

Recombinant Escherichia coli strains harboring heterologous polyhydroxyalkanoate (PHA) biosynthesis genes were shown to accumulate unusually large amounts of PHA. In the present study, integrated cellular responses of metabolically engineered E. coli to the accumulation of poly(3-hydroxybutyrate) (PHB) in the early stationary phase were analyzed at the protein level by two-dimensional gel electrophoresis. Out of 20 proteins showing altered expression levels with the accumulation of PHB, 13 proteins were identified with the aid of mass spectrometry. Three heat shock proteins, GroEL, GroES, and DnaK, were significantly up-regulated in PHB-accumulating cells. Proteins which play essential roles in protein biosynthesis were unfavorably influenced by the accumulation of PHB. Cellular demand for the large amount of acetyl coenzyme A and NADPH for the PHB biosynthesis resulted in the increased synthesis of two enzymes of the glycolytic pathway and one enzyme of the Entner-Doudoroff pathway. The expression of the yfiD gene encoding a 14.3-kDa protein, which is known to be produced at low pH, was greatly induced with the accumulation of PHB. Therefore, it could be concluded that the accumulation of PHB in E. coli acted as a stress on the cells, which reduced the cells' ability to synthesize proteins and induced the expression of various protective proteins.  (+info)

Effects of alloxan diabetes, anti-insulin serum diabetes, and non-diabetic dehydration on brain carbohydrate and energy metabolism in young mice. (39/964)

Alloxan-induced diabetes of 4 days duration produced metabolite changes in brain compatible with severe reduction in cerebral metabolism (phosphocreatine increased 70%), and reduced phosphofructokinase activity (fructose diphosphate levels fell 38%). There was a 56% reduction in brain lactate concentration, but pyruvate levels were unchanged. In 5 of 23 animals, brain glycogen levels increased; in the remainder blycogen levels decreased. Brain fructose concentration, 0.4 mmol/kg, was only 1/30 of the glucose concentration. The alloxan-treated animals were also severely dehydrated. Therefore, to determine the casual relation of insulin deficiency to these findings, the effects of chronic dehydration and acute insulin deficiency were investigated. Findings in the brains of severely dehydrated animals (water deprivation and mannitol injections for 4 days) were almost identical with those seen after alloxan treatment. The exceptions were that, in the dehydrated mice, reductions in lactate and pyruvate were proportional, and glycogen levels were consistently reduced. In acute diabetes (6 to 24 hours after repeated anti-insulin serum injections) P-creatine, fructose diphosphate, and lactate levels were normal. Pyruvate levels were normal at 6 hours, but increased 39% by 12 to 24 hours; glycogen was 36% higher at 6 hours and 63% at 12 to 24 hours. Insulin (and glucose) appeared to be specific in correcting the metabolic abnormalities found in the brains of animals with alloxan-induced diabetes. At 4 and one half hours after treatment with insulin and glucose, glucose 6-phosphate levels fell 25%, fructose diphosphate increased 28%, and lactate and the lactate to pyruvate ratio returned to normal; glycogen increased 50%. However, the treatment also had a dramatic clinical effect. Since animals gained 8 to 27% of body weight during therapy, at least some of the improvements in metabolite levels could be related to rehydration.  (+info)

Alginate formation in Azotobacter vinelandii UWD during stationary phase and the turnover of poly-beta-hydroxybutyrate. (40/964)

Azotobacter vinelandii UWD is a mutant of strain UW that is defective in the respiratory oxidation of NADH. This mutation causes an overproduction of polyhydroxyalkanoates (PHAs), as polyester synthesis is used as an alternative electron sink. Since PHAs have potential for use as natural, biodegradable plastics, studies of physiology related to their production are of interest. Alginate production by this strain is limited to < 11 microg (mg cell protein)(-1), which permits high efficiency conversion of carbon source into PHA. However, < or = 400 microg (mg cell protein)(-1) was formed when UWD cells were oxygen-limited and in the stationary phase of growth. Alginate formation was fuelled by PHA turnover, which was coincident with the synthesis of alkyl resorcinols, under conditions of exogenous glucose limitation. However, alginate production was a phenotypic and reversible change. Alginate production was stopped by interruption of algD with Tn5lacZ. LacZ activity in UWD was shown to increase in stationary phase, while LacZ activity in a similarly constructed mutant of strain UW did not. Transcription of algD in strain UWD started from a previously identified RpoD promoter and not from the AlgU (RpoE) promoter. This is because strain UWD has a natural insertion element in algU. Differences between strain UW and UWD may reside in the defective respiratory oxidation of NADH, where the NADH surplus in strain UWD may act as a signal of stationary phase. Indeed, a backcross of UW DNA into UWD generated NADH-oxidase-proficient cells that failed to form alginate in stationary phase. Evidence is also presented to show that the RpoD promoter may be recognized by the stationary phase sigma factor (RpoS), which may mediate alginate production in strain UWD.  (+info)