(1/4501) Allosteric activation mechanism of the alpha 1 beta 2 gamma 2 gamma-aminobutyric acid type A receptor revealed by mutation of the conserved M2 leucine.

A conserved leucine residue in the midpoint of the second transmembrane domain (M2) of the ligand-activated ion channel family has been proposed to play an important role in receptor activation. In this study, we assessed the importance of this leucine in the activation of rat alpha 1 beta 2 gamma 2 GABA receptors expressed in Xenopus laevis oocytes by site-directed mutagenesis and two-electrode voltage clamp. The hydrophobic conserved M2 leucines in alpha1(L263), beta2(L259), and gamma 2(L274) subunits were mutated to the hydrophilic amino acid residue serine and coexpressed in all possible combinations with their wild-type and/or mutant counterparts. The mutation in any one subunit decreased the EC(50) and created spontaneous openings that were blocked by picrotoxin and, surprisingly, by the competitive antagonist bicuculline. The magnitudes of the shifts in GABA EC(50) and picrotoxin IC(50) as well as the degree of spontaneous openings were all correlated with the number of subunits carrying the leucine mutation. Simultaneous mutation of the GABA binding site (beta 2Y157S; increased the EC(50)) and the conserved M2 leucine (beta 2L259S; decreased the EC(50)) produced receptors with the predicted intermediate agonist sensitivity, indicating the two mutations affect binding and gating independently. The results are discussed in light of a proposed allosteric activation mechanism.  (+info)

(2/4501) Gamma-aminobutyric acid increases the water accessibility of M3 membrane-spanning segment residues in gamma-aminobutyric acid type A receptors.

Gamma-aminobutyric acid type A (GABA(A)) receptors are members of the ligand-gated ion channel gene superfamily. Using the substituted cysteine accessibility method, we investigated whether residues in the alpha(1)M3 membrane-spanning segment are water-accessible. Cysteine was substituted, one at a time, for each M3 residue from alpha(1)Ala(291) to alpha(1)Val(307). The ability of these mutants to react with the water-soluble, sulfhydryl-specific reagent pCMBS(-) was assayed electrophysiologically. Cysteines substituted for alpha(1)Ala(291) and alpha(1)Tyr(294) reacted with pCMBS(-) applied both in the presence and in the absence of GABA. Cysteines substituted for alpha(1)Phe(298), alpha(1)Ala(300), alpha(1)Leu(301), and alpha(1)Glu(303) only reacted with pCMBS(-) applied in the presence of GABA. We infer that the pCMBS(-) reactive residues are on the water-accessible surface of the protein and that GABA induces a conformational change that increases the water accessibility of the four M3 residues, possibly by inducing the formation of water-filled crevices that extend into the interior of the protein. Others have shown that mutations of alpha(1)Ala(291), a water-accessible residue, alter volatile anesthetic and ethanol potentiation of GABA-induced currents. Water-filled crevices penetrating into the interior of the membrane-spanning domain may allow anesthetics and alcohol to reach their binding sites and thus may have implications for the mechanisms of action of these agents.  (+info)

(3/4501) A numerical measure of amino acid residues similarity based on the analysis of their surroundings in natural protein sequences.

A measure of similarity between amino acid residues based on the analysis of the surroundings of each residue in primary structures of native proteins is proposed. The statistical data used for this purpose were obtained from the analysis of 168,808 protein sequences, which comprise the Protein Identification Research database (release 63). Using various threshold values of the proposed measure, amino acid residues were classified into several groups. The classification elaborated differs essentially from groupings previously used. The numerical measure of amino acid residues similarity can be used in site-directed mutagenesis studies for the prediction of probability of local spatial rearrangements in proteins.  (+info)

(4/4501) Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides.

Immunostimulatory CpG oligonucleotides (ODN) show promise as immune adjuvants, anti-allergens, and immunoprotective agents. Increasing the bioavailability and duration of action of CpG ODN should improve their therapeutic utility. Encapsulating ODN in sterically stabilized cationic liposomes provides protection from serum nucleases while facilitating uptake by B cells, dendritic cells, and macrophages. In a pathogen challenge model, sterically stabilized cationic liposomes encapsulation doubled the duration of CpG ODN-induced immune protection. In an immunization model, coencapsulation of CpG ODN with protein Ag (OVA) magnified the resultant Ag-specific IFN-gamma and IgG responses by 15- to 40-fold compared with Ag plus CpG ODN alone. These findings support the use of sterically stabilized cationic liposomes to significantly enhance the therapeutic efficacy of CpG ODN.  (+info)

(5/4501) Role of interfacial hydrophobic residues in the stabilization of the leucine zipper structures of the transcription factors c-Fos and c-Jun.

This study documents a new and versatile experimental approach to study the relative stabilization energetics of recombinant polypeptide and protein mutants. In particular, the effect of temperature change over the range of T = 278-338 K on the thermodynamics of interaction of several leucine zipper coiled-coil polypeptides related to the transcription factors, c-Fos and c-Jun, following binding to immobilized n-octyl ligands has been determined. Plots of the change in heat capacity, DeltaC(p)0, versus T, in combination with the corresponding van't Hoff plots, allow the energetics of the interaction of polypeptides with n-octyl ligands to be rationalized and the respective mid-point transition temperatures, T(m) values, determined for the melting of their supramolecular structures. The derived experimental data correlated well with information available from other procedures, confirming that this new approach provides complementary insight into the interaction thermodynamics and the molecular nature of the thermal stability of recombinant polypeptides in non-polar or other types of chemical environments.  (+info)

(6/4501) Bile-salt hydrophobicity is a key factor regulating rat liver plasma-membrane communication: relation to bilayer structure, fluidity and transporter expression and function.

Bile-salt hydrophobicity regulates biliary phospholipid secretion and subselection. The aim of this study was to determine whether bile salts can influence liver plasma membrane phospholipids and fluidity in relation to the ATP-dependent transporter. Rats were depleted of bile salts by overnight biliary diversion and then sodium taurocholate was infused intravenously at a constant rate (200 nmol/min per 100 g of body weight), followed by infusion of bile salts with various hydrophobicities (taurochenodeoxycholate, tauroursodeoxycholate, tauro-beta-muricholate, tauro-alpha-muricholate at 200 nmol/min per 100 g of body weight). The hydrophobicity of the infused bile salts correlated with that of biliary phospholipids, but was inversely related to that of the canalicular membrane bilayer. Canalicular membrane fluidity (estimated by 1,6-diphenyl-1,3,5-hexatriene fluorescence depolarization) and expression of multidrug-resistance proteins (Mrp2, Mrp3) and apical Na(+)-dependent bile-salt transporter (ASBT) were increased by hydrophilic bile salts, although there was no marked change in the expression of P-glycoprotein subfamilies (Mdr2). Bile-salt export pump (Bsep) expression was increased along with increasing bile-salt hydrophobicity. Bile salts modulate canalicular membrane phospholipids and membrane fluidity, as well as the ATP-dependent transporter expression and function, and these actions are associated with their hydrophobicity. The cytoprotective effect of hydrophilic bile salts seems to be associated with induction of Mrp2, Mrp3 and ASBT.  (+info)

(7/4501) Structure-function analysis of the heat shock factor-binding protein reveals a protein composed solely of a highly conserved and dynamic coiled-coil trimerization domain.

Heat shock factor-binding protein (HSBP) 1 is a small, evolutionarily conserved protein originally identified in a yeast two-hybrid screen using the trimerization domain of heat shock factor (HSF) 1 as the bait. Similar in size to HSF1 trimerization domain, human HSBP1 contains two arrays of hydrophobic heptad repeats (designated HR-N and HR-C) characteristic of coiled-coil proteins. Proteins of the HSBP family are relatively small (<100 residues), comprising solely a putative coiled-coil oligomerization domain without any other readily recognizable structural or functional motif. Our biophysical and biochemical characterization of human HSBP1 reveals a cooperatively folded protein with high alpha-helical content and moderate stability. NMR analyses reveal a single continuous helix encompassing both HR-N and HR-C in the highly conserved central region, whereas the less conserved carboxyl terminus is unstructured and accessible to proteases. Unlike previously characterized coiled-coils, backbone 15N relaxation measurements implicate motional processes on the millisecond time scale in the coiled-coil region. Analytical ultracentrifugation and native PAGE studies indicate that HSBP1 is predominantly trimeric over a wide concentration range. NMR analyses suggest a rotationally symmetric trimer. Because the highly conserved hydrophobic heptad repeats extend over 60% of HSBP1, we propose that HSBP most likely regulates the function of other proteins through coiled-coil interactions.  (+info)

(8/4501) Optimization of microbial specificity in cyclic peptides by modulation of hydrophobicity within a defined structural framework.

In the present study we have utilized the structural framework of the analog GS14K4 (cyclo(VKLd-KVd-YPL KVKLd-YP, where d denotes a d-amino acid)), to examine the role of hydrophobicity in microbial activity and specificity. The hydrophobicity of GS14K4 was systematically altered by residue replacements in the hydrophobic sites of the molecule to produce a series of analogs that were either less or more hydrophobic than the parent compound. Circular dichroism spectroscopy and reversed-phase high performance liquid chromatography analysis showed that the molecules were structurally similar and only differed in overall hydrophobicity. The hydrophobicity of GS14K4 was found to be the midpoint for hemolytic activity, with more hydrophobic analogs exhibiting increased hemolytic activity and less hydrophobic analogs showing decreased hemolytic activity. For antimicrobial activity there were differences between the hydrophobicity requirements against Gram-positive and Gram-negative microorganisms. The hydrophobicity of GS14K4 was sufficient for maximum activity against Gram-negative microorganisms and yeast, with no further increases in activity occurring with increasing hydrophobicity. With Gram-positive microorganisms significant increases in activity with increasing hydrophobicity were seen in three of the six microorganisms tested. A therapeutic index (calculated as a measure of specificity of the peptides for the microorganisms over human erythrocytes) served to define the boundaries of a therapeutic window within which lay the optimum peptide hydrophobicity for each microorganism. The therapeutic window was found to be at a lower hydrophobicity level for Gram-negative microorganisms than for Gram-positive microorganisms, although the limits were more variable for the latter. Our results show that the balance between activity and specificity in the present cyclic peptides can be optimized for each microorganism by systematic modulation of hydrophobicity.  (+info)