Structure-function studies of Ser-289 in the class C beta-lactamase from Enterobacter cloacae P99. (17/15486)

Site-directed mutagenesis of Ser-289 of the class C beta-lactamase from Enterobacter cloacae P99 was performed to investigate the role of this residue in beta-lactam hydrolysis. This amino acid lies near the active site of the enzyme, where it can interact with the C-3 substituent of cephalosporins. Kinetic analysis of six mutant beta-lactamases with five cephalosporins showed that Ser-289 can be substituted by amino acids with nonpolar or polar uncharged side chains without altering the catalytic efficiency of the enzyme. These data suggest that Ser-289 is not essential in the binding or hydrolytic mechanism of AmpC beta-lactamase. However, replacement by Lys or Arg decreased by two- to threefold the kcat of four of the five beta-lactams tested, particularly cefoperazone, cephaloridine, and cephalothin. Three-dimensional models of the mutant beta-lactamases revealed that the length and positive charge of the side chain of Lys and Arg could create an electrostatic linkage to the C-4 carboxylic acid group of the dihydrothiazine ring of the acyl intermediate which could slow the deacylation step or hinder release of the product.  (+info)

Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium. (18/15486)

Because the rod structure of the flagellar basal body crosses the inner membrane, the periplasmic space, and the outer membrane, its formation must involve hydrolysis of the peptidoglycan layer. So far, more than 10 genes have been shown to be required for rod formation in Salmonella typhimurium. Some of them encode the component proteins of the rod structure, and most of the remaining genes are believed to encode proteins involved in the export process of the component proteins. Although FlgJ has also been known to be involved in rod formation, its exact role has not been understood. Recently, it was suggested that the C-terminal half of the FlgJ protein has homology to the active center of some muramidase enzymes from gram-positive bacteria. In this study, we showed that the purified FlgJ protein from S. typhimurium has a peptidoglycan-hydrolyzing activity and that this activity is localized in its C-terminal half. Through oligonucleotide-directed mutagenesis, we constructed flgJ mutants with amino acid substitutions in the putative active center of the muramidase. The resulting mutants produced FlgJ proteins with reduced enzymatic activity and showed poor motility. These results indicate that the muramidase activity of FlgJ is essential for flagellar formation. Immunoblotting analysis with the fractionated cell extracts revealed that FlgJ is exported to the periplasmic space, where the peptidoglycan layer is localized. On the basis of these results, we conclude that FlgJ is the flagellum-specific muramidase which hydrolyzes the peptidoglycan layer to assemble the rod structure in the periplasmic space.  (+info)

A acid-stable analogue of the 3-beta-D-ribofuranoside of Y-base. (19/15486)

A cyclonucleoside analogue of Y(TU) riboside has been prepared and shown to be relatively stable in M-hydrochloric acid solution at room temperature.  (+info)

Use of site-directed mutagenesis to probe the structure, function and isoniazid activation of the catalase/peroxidase, KatG, from Mycobacterium tuberculosis. (20/15486)

A series of mutants bearing single amino acid substitutions often encountered in the catalase/peroxidase, KatG, from isoniazid-resistant isolates of Mycobacterium tuberculosis has been produced by site-directed mutagenesis. The resultant enzymes were overexpressed, purified and characterized. Replacing Cys-20 by Ser abolished disulphide-bridge formation, but did not affect either dimerization of the enzyme or catalysis. The substitution of Thr-275, which is probably involved in electron transfer from the haem, by proline resulted in a highly unstable enzyme with insignificant enzyme activities. The most commonly occurring substitution in drug-resistant clinical isolates is the replacement of Ser-315 by Thr; this lowered catalase and peroxidase activities by 50% and caused a significant decrease in the KatG-mediated inhibition of the activity of the NADH-dependent enoyl-[acyl-carrier protein] reductase, InhA, in vitro. The ability of this enzyme to produce free radicals from isoniazid was severely impaired, as judged by its loss of NitroBlue Tetrazolium reduction activity. Replacement of Leu-587 by Pro resulted in marked instability of KatG, indicating that the C-terminal domain is also important for structural and functional integrity.  (+info)

ATP dependence of the ICl,swell channel varies with rate of cell swelling. Evidence for two modes of channel activation. (21/15486)

Swelling-induced activation of the outwardly rectifying anion current, ICl, swell, is modulated by intracellular ATP. The mechanisms by which ATP controls channel activation, however, are unknown. Whole cell patch clamp was employed to begin addressing this issue. Endogenous ATP production was inhibited by dialyzing N1E115 neuroblastoma cells for 4-5 min with solutions containing (microM): 40 oligomycin, 5 iodoacetate, and 20 rotenone. The effect of ATP on current activation was observed in the absence of intracellular Mg2+, in cells exposed to extracellular metabolic inhibitors for 25-35 min followed by intracellular dialysis with oligomycin, iodoacetate, and rotenone, after substitution of ATP with the nonhydrolyzable analogue AMP-PNP, and in the presence of AMP-PNP and alkaline phosphatase to dephosphorylate intracellular proteins. These results demonstrate that the ATP dependence of the channel requires ATP binding rather than hydrolysis and/or phosphorylation reactions. When cells were swollen at 15-55%/min in the absence of intracellular ATP, current activation was slow (0.3-0.8 pA/pF per min). ATP concentration increased the rate of current activation up to maximal values of 4-6 pA/pF per min, but had no effect on the sensitivity of the channel to cell swelling. Rate of current activation was a saturable, hyperbolic function of ATP concentration. The EC50 for ATP varied inversely with the rate of cell swelling. Activation of current was rapid (4-6 pA/pF per min) in the absence of ATP when cells were swollen at rates >/=65%/min. Intracellular ATP concentration had no effect on current activation induced by high rates of swelling. Current activation was transient when endogenous ATP was dialyzed out of the cytoplasm of cells swollen at 15%/min. Rundown of the current was reversed by increasing the rate of swelling to 65%/min. These results indicate that the channel and/or associated regulatory proteins are capable of sensing the rate of cell volume increase. We suggest that channel activation occurs via ATP-dependent and -independent mechanisms. Increasing the rate of cell swelling appears to increase the proportion of channels activating via the ATP-independent pathway. These findings have important physiological implications for understanding ICl, swell regulation, the mechanisms by which cells sense volume changes, and volume homeostasis under conditions where cell metabolism is compromised.  (+info)

Citric acid production from xylan and xylan hydrolysate by semi-solid culture of Aspergillus niger. (22/15486)

Citric acid production from xylan and xylan hydrolysate was done by Aspergillus niger Yang no. 2 cultivated in a semi-solid culture using bagasse as a carrier. Yang no. 2 produced 72.4 g/l and 52.6 g/l of citric acid in 5 d from 140 g/l of xylose and arabinose, respectively. Yang no. 2 produced 51.6 g/l of citric acid in 3 d from a concentrated xylan hydrolysate prepared by cellulase treatment, containing 100 g/l of reducing sugars. Moreover, Yang no. 2 directly produced 39.6 g/l of citric acid maximally in 3 d from 140 g/l of xylan.  (+info)

Cholesteryl ester hydrolysis in J774 macrophages occurs in the cytoplasm and lysosomes. (23/15486)

The relationship of cholesteryl ester hydrolysis to the physical state of the cholesteryl ester in J774 murine macrophages was explored in cells induced to store cholesteryl esters either in anisotropic (ordered) inclusions or isotropic (liquid) inclusions. In contrast to other cell systems, the rate of cholesteryl ester hydrolysis was faster in cells containing anisotropic inclusions than in cells containing isotropic inclusions. Two contributing factors were identified. Kinetic analyses of the rates of hydrolysis are consistent with a substrate competition by co-deposited triglyceride in cells with isotropic inclusions. In addition, hydrolysis of cholesteryl esters in cells with anisotropic droplets is mediated by both cytoplasmic and lysosomal lipolytic enzymes, as shown by using the lysosomotropic agent, chloroquine, and an inhibitor of neutral cholesteryl ester hydrolase, umbelliferyl diethylphosphate. In cells containing anisotropic inclusions, hydrolysis was partially inhibited by incubation in media containing either chloroquine or umbelliferyl diethylphosphate. Together, chloroquine and umbelliferyl diethylphosphate completely inhibited hydrolysis. However, when cells containing isotropic inclusions were incubated with umbelliferyl diethylphosphate, cholesteryl ester hydrolysis was completely inhibited, but chloroquine had no effect. Transmission electron microscopy demonstrated a primarily lysosomal location for lipid droplets in cells with anisotropic droplets and both non-lysosomal and lysosomal populations of lipid droplets in cells with isotropic droplets. These results support the conclusion that there is a lysosomal component to the hydrolysis of stored cholesteryl esters in foam cells.  (+info)

RNA determinants for translational editing. Mischarging a minihelix substrate by a tRNA synthetase. (24/15486)

The fidelity of protein synthesis requires efficient discrimination of amino acid substrates by aminoacyl-tRNA synthetases. Accurate discrimination of the structurally similar amino acids, valine and isoleucine, by isoleucyl-tRNA synthetase (IleRS) results, in part, from a hydrolytic editing reaction, which prevents misactivated valine from being stably joined to tRNAIle. The editing reaction is dependent on the presence of tRNAIle, which contains discrete D-loop nucleotides that are necessary to promote editing of misactivated valine. RNA minihelices comprised of just the acceptor-TPsiC helix of tRNAIle are substrates for specific aminoacylation by IleRS. These substrates lack the aforementioned D-loop nucleotides. Because minihelices contain determinants for aminoacylation, we thought that they might also play a role in editing that has not previously been recognized. Here we show that, in contrast to tRNAIle, minihelixIle is unable to trigger the hydrolysis of misactivated valine and, in fact, is mischarged with valine. In addition, mutations in minihelixIle that enhance or suppress charging with isoleucine do the same with valine. Thus, minihelixIle contains signals for charging (by IleRS) that are independent of the amino acid and, by itself, minihelixIle provides no determinants for editing. An RNA hairpin that mimics the D-stem/loop of tRNAIle is also unable to induce the hydrolysis of misactivated valine, both by itself and in combination with minihelixIle. Thus, the native tertiary fold of tRNAIle is required to promote efficient editing. Considering that the minihelix is thought to be the more ancestral part of the tRNA structure, these results are consistent with the idea that, during the development of the genetic code, RNA determinants for editing were added after the establishment of an aminoacylation system.  (+info)