A new method for synthesis of 7-deoxytaxane analogues by hydrogenation of delta(6,7)-taxane derivatives. (25/321)

A new method for the synthesis of 7-deoxytaxane analogues has been established through hydrogenation of Delta(6,7)-taxane derivatives. Among several catalysts examined, Pd-C was found to be a most effective catalyst for the preparation of target compound.  (+info)

Production of conjugated linoleic acid by intestinal bacteria in dogs and cats. (26/321)

Production of conjugated linoleic acid (CLA) by the intestinal bacteria of dogs and cats was demonstrated by incubating their feces with linoleic acid (LA). CLA accumulated once, and then decreased with time. The numbers of LA-hydrogenating bacteria in the intestines appeared to decrease greatly with the ages of dogs and cats. As a major product of LA biohydrogenation, trans-vaccenic acid (t-VA) was identified. Most CLA and t-VA were readily solubilized by shaking the incubation mixture with bovine serum albumin, which strongly supports the presumption that CLA and t-VA are mostly formed on the outer surface of cell membrane, or excreted to the outer cell surface. This result suggests that CLA and t-VA can readily be absorbed through the large intestines. Triacylglycerol and phospholipid were shown to be hydrolyzed to free fatty acids by fecal bacteria, which is critical for biohydrogenation to occur, because esterified LA is not hydrogenated. However, since the ability of intestinal bacteria to produce CLA is probably low, it is desirable to augment CLA production.  (+info)

Effect of high-oil corn or added corn oil on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. (27/321)

Three Angus steers (410 kg) cannulated in the proximal duodenum were used in a replicated 3 x 3 Latin square to evaluate the effects of dietary lipid level and oil source on ruminal biohydrogenation and conjugated linoleic acid (CLA) outflow. Dietary treatments included: 1) typical corn (TC; 79.2% typical corn), 2) high-oil corn (HOC; 79.2% high-oil corn), and 3) the TC diet with corn oil added to supply an amount of lipid equal to the HOC diet (OIL; 76.9% TC + 2.4% corn oil). Duodenal samples were collected for 4 d following 10-d diet adaptation periods. Data were analyzed with animal, square, period, and treatment in the model and planned, nonorthogonal contrasts were used to test the effects of dietary lipid content (TC vs HOC and OIL) and oil source (HOC vs OIL) on ruminal biohydrogenation. Intake and duodenal flow of total long-chain fatty acids were increased (P < 0.05) by over 63% for diets containing more lipid regardless of oil source. Apparent ruminal dry matter and long chain fatty acid digestibilities were not altered (P > 0.05) by dietary lipid level or oil source. Ruminal biohydrogenation of total and individual 18-carbon unsaturated fatty acids was greater (P < 0.05) for diets with higher lipid content. Biohydrogenation of oleic acid was greater (P < 0.05) for HOC than OIL, but biohydrogenation of linoleic acid was lower (P < 0.05) for HOC than OIL. Duodenal flows of palmitic, stearic, oleic, linoleic, and arachidic acids were more than 30% greater (P < 0.05) for diets containing more lipid. Flow of all trans-octadecenoic acids was greater (P < 0.05) for diets containing more lipid. Corn oil addition increased (P < 0.05) the flow of trans-10 octadecenoic acid and the trans-10, cis-12 isomer of CLA by threefold compared to feeding high-oil corn. Feeding high-oil corn or adding corn oil to typical corn rations increased intake, biohydrogenation, and duodenal flow of unsaturated long-chain fatty acids. Compared with high-oil corn diets, addition of corn oil increased duodenal flow of trans-10, trans-12 and cis-12 isomers of octadecenoic acid and the trans-10, cis-12 isomer of CLA. The amount of cis-9, trans-11 isomer of conjugated linoleic acid flowing to the duodenum was less than 260 mg/d, a value over 20 times lower than flow of trans-11 vaccenic acid indicating the importance of tissue desaturation for enhanced conjugated linoleic acid content of beef.  (+info)

Pd/C-catalyzed chemoselective hydrogenation in the presence of a phenolic MPM protective group using pyridine as a catalyst poison. (28/321)

Employment of a Pd/C-pyridine combination as a catalyst is a very useful method for the selective removal (hydrogenolysis) of phenolic O-benzyl, N-Cbz and benzyl ester protective groups and for the selective hydrogenation of nitro and olefin functions of phenol derivatives protected with the MPM group. These discriminatory results are apparently attributable to the effect of pyridine. The MPM group could be extensively applied to chemoselective hydrogenation as a protective group for phenolic hydroxyl functions.  (+info)

Biohydrogenation of unsaturated fatty acids. Hydrogenation by cell-free preparations of Butyrivibrio fibrisolvens. (29/321)

Hydrogenation of cis-9,trans-11-octadecadienoic acid to yield trans-11-octadecenoic acid by cell-free preparations of Butyrivibrio fibrisolvens has been obtained under strictly anaerobic conditions. Reduced methyl viologen, NADH, and an endogenous electron donor each can serve as a reductant. Inhibition studies and gel filtration patterns reveal the presence of at least two hydrogenation systems, one of which is coupled through a flavin, possibly FMN. Although the enzymes comprising the biohydrogenation pathway, the fatty acid reductases and linoleic acid isomerase, are part of the bacterial membrane, they do not appear to be constituted as a multienzyme complex.  (+info)

Lipid chemistry--a personal view of some developments in the last 60 years. (30/321)

This review tracks some of the changes in fatty acid chemistry that have occurred during the past 60 years. Once disparaged, this topic is now recognised as important in biochemistry and nutrition. Among the significant areas that are addressed are fatty acid oxidation and hydrogenation, fatty acid synthesis, and selected reactions of the carboxyl group and of unsaturated centres. Underlying many of the developments that have occurred have been important advances in lipid analysis and a clearer understanding of reaction mechanism and stereochemistry. Developments in the future will include greater use of enzymes in technological processes and will result from environmental pressures to conduct reactions under milder conditions, use less solvent, and produce less waste.  (+info)

Microbial enantioselective reduction of acetylpyridine derivatives. (31/321)

The microbial enantioselective reduction of acetylpyridine derivatives was studied. Many microorganisms were found to reduce 5-acetylfuro[2,3-c]pyridine (AFP) to (S)-5-(1-hydroxyethyl)furo[2,3-c]-pyridine (FPH). Candida maris IFO10003 reduced AFP to (R)-FPH with high enantioselectivity. The microbial reduction reaction was optimized. The aeration conditions and glucose concentration affected the yield and stereoselectivity. The cells accumulated 17.5 g/l (107 mM) of (R)-FPH with a 99% yield and 97% enantiomeric excess (e.e.). A cell-free extract of C. maris accumulated 91.5 g/l (559 mM) with over 99% e.e. with enzymatic NADH regeneration. (R)-FPH is an important intermediate for the synthesis of HIV reverse-transcriptase inhibitor, and other optically active 1-(pyridyl)ethanol derivatives are versatile chiral building blocks for asymmetric synthesis.  (+info)

Biohydrogenation of unsaturated fatty acids in continuous culture fermenters during digestion of orchardgrass or red clover with three levels of ground corn supplementation. (32/321)

Diet digestibility and outputs of biohydrogenation intermediates were assessed in a continuous culture of ruminal microorganisms. Orchardgrass or red clover harvested and frozen during spring or fall served as the primary substrates for fermentation. During 10-d incubations, fermenters were fed thawed forage (50 g of DM/d), forage (42 g/d) plus 8 g/d of corn, or forage (34 g/d) plus 16 g/d of corn. Effluents from the last 3 d of incubation were composited for analyses. Starch input increased from 5 to 27% of DM as corn input increased from 0 to 16 g/d. Corn input reduced (P < 0.01) pH, increased (P < 0.01) microbial DM yield, and increased (P = 0.01) digestibility of DM, NDF, CP, and nonstructural carbohydrates. Overall, apparent hydrogenation (percentage) of cis9-18:1, 18:2n-6, and 18:3n-3 was greater (P < 0.05) with orchardgrass than clover. Hydrogenation of cis9-18:1 and 18:2n-6 increased (P = 0.01), but hydrogenation of 18:3n-3 decreased (P = 0.01) linearly due to corn input, regardless of forage. As a result, output of trans11, cis15-18:2 also decreased (P = 0.01). Average output of cis9,trans11-18:2 was greater (P = 0.01) for clover (1.3 mg/d) compared with orchardgrass (0.6 mg/d), but corn input with either forage increased (P = 0.01) cis9,trans11-18:2 output by 205%. Output of trans11-18:1 was greater (P = 0.01) from orchardgrass compared with clover (174 vs. 90 mg/d), but corn increased (P = 0.01) trans11-18:1 output only from clover fermentations. Output of trans10-18:1 was greater (P = 0.01) in response to orchardgrass compared with clover (10 vs. 4 mg/d), but corn addition doubled the output regardless of forage type. Output of trans10,cis12-18:2, which did not differ due to forage type, increased (P = 0.01) twofold in response to corn. Cis9,cis11-18:2 was a primary conjugated isomer produced from forage fermentations, but its output decreased (P = 0.03) in response to corn input. When inputs of 18:2n-6 plus 18:3n-3 were less than 0.9% of total DM (clover), hydrogenation was low (87%). When 18:2n-6 plus 18:3n-3 inputs were from 1.2 to 1.5% of total DM (orchardgrass), hydrogenation averaged 96%. Despite greater hydrogenation, incremental additions of cis9-18:1 and 18:2n-6 from corn grain increased (P < 0.05) outputs of trans10-18:1, trans11-18:1, trans10,cis12-18:2, cis9,trans11-18:2, and trans,trans-18:2 in effluent. Results suggest that forage species alone or in combination with corn grain can alter hydrogenation and profiles of intermediates to varying degrees.  (+info)