(1/6687) The effects of glucocorticoids and progesterone on hormone-responsive human breast cancer in long-term tissue culture.

Glucocorticoids, at physiological concentration, inhibit cell division and thymidine incorporation in three lines of human breast cancer maintained in long-term tissue culture. At steroid concentrations sufficient to inhibit thymidine incorporation 50%, little or no effect is seen on protein synthesis 48 hr after hormone addition. All three of these lines are shown to have glucocorticoid receptors demonstrable by competitive protein binding assays. Receptors are extensively characterized in one line by sucrose density gradient analysis and binding specificity studies. Good correlation between receptor-binding specificity and biological activity is found except for progesterone, which binds to glucocorticoid receptor but is noninhibitory. Cross-competition and quantification studies demonstrate a separate receptor for progesterone. This receptor has limited binding specificities restricted largely to progestational agents, whereas the glucocorticoid receptor bound both glucocorticoids and progesterone. Two other human breast cancer lines neither contain glucocorticoid receptor nor are inhibited by glucocorticoids. It is concluded that in some cases glucocorticoids can directly limit growth in human breast cancer in vitro without requiring alterations in other trophic hormones.  (+info)

(2/6687) Cortisol in fetal fluids and the fetal adrenal at parturition in the tammar wallaby (Macropus eugenii).

Glucocorticoid hormones may play a critical role in initiating parturition in tammar wallabies. In this study, we investigated the concentration of cortisol in fetal fluids and cortisol production by fetal adrenals over the last 3 days of the 26-day pregnancy and within 24 h postpartum. The fetal adrenals almost doubled in size between Days 24 and 26 of pregnancy, and their cortisol content increased over 10-fold during this period, from 10 pg to over 100 pg per adrenal pair. After birth, neonatal adrenals continued to grow, but cortisol content fell dramatically to 20 pg. The prepartum increase in adrenal cortisol was reflected by a substantial rise in cortisol concentrations in yolk sac fluid, allantoic fluid, and fetal blood, which were below 10 ng/ml on Day 24 and rose to over 40 ng/ml by Day 26. Cortisol concentrations in neonatal blood decreased postpartum, mirroring decreased cortisol content in neonatal adrenals. Cortisol production by the fetal adrenal was stimulated in vitro by ACTH and prostaglandin E2, suggesting that the in vivo increase may be stimulated by release of ACTH from the fetal hypothalamic-pituitary axis and prostaglandin E2 from the placenta. These results indicate that increasing cortisol production by the fetal adrenal is a characteristic of late pregnancy in the tammar wallaby and support the suggestion that fetal cortisol may trigger the initiation of parturition in this marsupial species.  (+info)

(3/6687) Delay of preterm delivery in sheep by omega-3 long-chain polyunsaturates.

A positive correlation has been shown between dietary intake of long-chain omega-3 fatty acids in late pregnancy and gestation length in pregnant women and experimental animals. To determine whether omega-3 fatty acids have an effect on preterm labor in sheep, a fish oil concentrate emulsion was continuously infused to six pregnant ewes from 124 days gestational age. At 125 days, betamethasone was administered to the fetus to produce preterm labor. Both the onset of labor and the time of delivery were delayed by the fish oil emulsion. Two of the omega-3-infused ewes reverted from contractions to nonlabor, an effect never previously observed for experimental glucocorticoid-induced preterm labor in sheep. Maternal plasma estradiol and maternal and fetal prostaglandin E2 rose in control ewes but not in those infused with omega-3 fatty acid. The ability of omega-3 fatty acids to delay premature delivery in sheep indicates their possible use as tocolytics in humans. Premature labor is the major cause of neonatal death and long-term disability, and these studies present information that may lead to a novel therapeutic regimen for the prevention of preterm delivery in human pregnancy.  (+info)

(4/6687) The requirement of an adherent cell substratum for the growth of developing plasmacytoma cells in vivo.

The intraperitoneal injection of pristane (2,6,10,14-tetramethylpentadecane) produces an environment conductive to primary plasmacytoma growth in as few as 3 days. After pristane injection, the total free peritoneal cell population increases from a normal value of 1.55 X 10(6) to 5.28 X 10(6) and remains at this elevated level for at least 50 days. The adherent peritoneal cell population, composed of both mononuclear cells and polymorphonuclear leukocytes, is the primary source of this increase. In the pristane-conditioned peritoneum, these cells rapidly form a chronic granuloma on the peritoneal connective tissues. Daily subcutaneous treatment of mice with 0.5 mg of hydrocortisone beginning simultaneously with pristane injection prevents the increase in the peritoneal cell population, granuloma formation, d the production of a conditoned environment. In mice treated with hydrocortisone beginning 3 days after pristane injection, however, neither the peritoneal cell increase nor the production of a conditioned environment is prevented. The intraperitoneal injection of thioglycolate medium at 4-day intervals produces an elevation of the free adherent peritoneal cell population similar to pristane, but does not produce a granuloma or a conditioned environment. The intraperitoneal transfer of thioglycolate-induced adherent peritonel cells to mice treated with pristane and hydrocortisone simultaneously restores the production of a conditioned environment. These findings indicate that the adherent peritoneal cell population is responsible for the conditioning effect, and that the establishment of a resident population of these cells is necessary to produce conditioning.  (+info)

(5/6687) On the meaning of low-dose ACTH(1-24) tests to assess functionality of the hypothalamic-pituitary-adrenal axis.

To analyse further the ACTH(1-24) low-dose test, which is of clinical interest, we have examined the dose-response relationship between plasma ACTH(1-24) and cortisol concentrations after i.v. administration of increasing doses (1, 5 or 250 microg) of ACTH(1-24) as a bolus. In addition, we have measured plasma ACTH(1-39) and cortisol levels after an insulin tolerance test (ITT). Although there was a dose response relationship between plasma ACTH(1-24) immunoreactivity and the dose injected, cortisol peaks were comparable, but lower than those reached after an ITT. Under these experimental conditions, an increase in plasma ACTH as low as 13 pmol/l (i.e. the increase obtained with the 1 microg dose) induced a near maximal cortisol response. Following injection of 1 microg ACTH(1-24), peak ACTH values were short lasting, similar to physiological daily bursts. After injection of 5 microg ACTH(1-24), plasma ACTH concentrations were higher than those reached during an ITT, but clearly shorter lasting. Injection of 250 microg ACTH(1-24) induced strikingly supraphysiological levels of plasma ACTH. We conclude that neither regular nor low-dose ACTH tests can fully reproduce the ITT. Our observations strongly suggest that the low-dose ACTH(1-24) test (1 microg) can be useful to estimate the adrenal sensitivity under basal, physiological conditions.  (+info)

(6/6687) RT-PCR quantification of AHR, ARNT, GR, and CYP1A1 mRNA in craniofacial tissues of embryonic mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and hydrocortisone.

C57BL/6N mouse embryos exposed to hydrocortisone (HC) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) develop cleft palate. An interaction between these agents produces clefts at doses which alone are not teratogenic. The glucocorticoid receptor (GR) and dioxin receptor (AhR) mediated these responses and their gene expression was altered by TCDD and/or HC in palates examined on gestation day (GD) 14 by Northern blot analysis and in situ hybridization. The present study quantifies AhR, AhR nuclear translocator (ARNT), and GR mRNA at 4, 12, 24, and 48 h after exposure (time 0 = dose administration at 8 A.M. on gestation day 12) on GD12 to TCDD (24 micrograms/kg), HC (100 mg/kg) or HC (25 mg/kg) + TCDD (3 micrograms/kg). The induction of CYP1A1 mRNA was also quantified at 2, 4, 6, 12, 24, and 48 h for control and TCDD-exposed samples. Total RNA was prepared from midfacial tissue of 4-6 embryos/litter at each time and dose. An RNA internal standard (IS) for each gene was synthesized, which included the gene's primer sequences separated by a pUC19 plasmid sequence. Reverse transcription-polymerase chain reaction (RT-PCR) was performed on total RNA + IS using a range of 5-7 IS concentrations across a constant level of total RNA. PCR products were separated in gels (mRNA and IS-amplified sequences differed by 30-50 bases), ethidium bromide-stained, imaged (Hamamatsu Photonics Systems, Bridgewater, NJ), and quantified with NIH Image. CYP1A1 mRNA was significantly induced in the TCDD-exposed samples at all time points examined (p = 0.005 at 2 h and 0.001 after 2 h). During palatal shelf outgrowth on GD12, AhR mRNA levels increased significantly and this was not affected by treatment with TCDD or HC + TCDD. A significant increase in GR was detected at 24 h (p < 0.05) and this was unaffected by any of the exposures. Expression of ARNT increased at 12 h (p < 0.001); however, treatment with HC or HC + TCDD blocked this increase (p < 0.05). At 24 h, the TCDD-treated embryos had significantly lower ARNT mRNA compared with controls (p < 0.001). The relative overall expression level of the genes was AhR > ARNT > GR. Within individuals, expression of AhR and/or ARNT was highly correlated with GR level. In conclusion, CYP1A1 mRNA was expressed in developing craniofacial tissue and was highly induced by TCDD exposure. AhR, ARNT, and GR mRNA are upregulated in early palatogenesis, although not on the same schedule. The TCDD-induced decrease in ARNT at 24 h after dosing and the HC and HC + TCDD-induced delay in upregulation of ARNT may affect the dynamics of heterodimer formation between AhR and ARNT. The changes in ARNT mRNA level could also affect availability of this transcriptional regulator to interact with other potential partners, and these effects, separately or in combination, may be involved in disruption of normal embryonic development.  (+info)

(7/6687) The effect of age and teat order on alpha1-acid glycoprotein, neutrophil-to-lymphocyte ratio, cortisol, and average daily gain in commercial growing pigs.

The objectives of the study were to evaluate age and teat order on a performance trait, average daily gain, and on physiological stress indicators, alpha1-acid glycoprotein (AGP), neutrophil-to-lymphocyte ratio (N:L), and cortisol in commercial growing pigs from weaning to market age. Pigs (n = 129) from five commercial California farms were weighed and blood-sampled at 28-d intervals from 28 to 168 d of age. Laboratory assays were performed from blood samples to quantify cortisol, AGP, and N:L. Age and facility effects (P<.001), but not teat order effects (P>.05), were found for all three physiological traits and ADG. Pigs that routinely suckled from teats 1, 4, or 6 (numbered from anterior to posterior on the upper teat bank) had similar (P>.05) ADG and BW throughout the production cycle. No correlation (P> .05) was found between cortisol, AGP, and N:L. The use of these physiological and production traits as stress and health indices of growing pigs in commercial facilities has limitations in comparing data between facilities or different ages of pigs.  (+info)

(8/6687) Diurnal variation and age differences in the biochemical markers of bone turnover in horses.

Biochemical markers of bone turnover provide sensitive, rapid, and noninvasive monitoring of bone resorption and formation. Serum concentrations of osteocalcin (OC) reflect rates of bone formation, and urinary concentrations of the pyridinium crosslinks pyridinoline (Pyd) and deoxypyridinoline (Dpd) are specific and sensitive markers of bone resorption. These markers are age-dependent and are used to detect and monitor changes in the rates of bone turnover in a variety of orthopedic diseases in humans and may prove to have similar application in horses. This study examined age differences and diurnal variation in OC, Pyd, and Dpd in eight adult geldings and seven weanling colts. Blood and urine were collected at regular intervals over 24 h. Serum OC and cortisol, and urinary Pyd and Dpd were analyzed. Mean 24-h concentrations of cortisol and all three markers were higher (P<.003) in weanlings than adults. Significant 24-h variation was observed in adult gelding OC, Pyd, and Dpd concentrations (P< .02). Adult OC concentrations were highest between 2400 and 0900; Pyd and Dpd peaked between 0200 and 0800. Similar patterns of bone turnover were observed in weanling values, but they were not significant (P>.17) owing to greater variability between individuals. Cortisol secretion varied (P<.001) over 24 h in both adults and weanlings and, thus, did not seem to be responsible for greater variability in markers of bone turnover between weanlings. These data demonstrate that diurnal rhythms exist for serum OC and urinary Pyd and Dpd in adult horses, as reported in humans, and that sample timing is an important consideration in future equine studies using these markers.  (+info)