2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum. (33/1396)

Component D (HgdAB) of 2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum was purified to homogeneity. It is able to use component A from Acidaminococcus fermentans (HgdC) to initiate catalysis together with ATP, Mg2+ and a strong reducing agent such as Ti(III)citrate. Component D from C. symbiosum has a 6 x higher specific activity compared with that from A. fermentans and contains a second [4Fe-4S] cluster but the same amount of riboflavin 5'-phosphate (1.0 per heterodimeric enzyme, m = 100 kDa). Mossbauer spectroscopy revealed symmetric cube-type structures of the two [4Fe-4S]2+ clusters. EPR spectroscopy showed the resistance of the clusters to reducing agents, but detected a sharp signal at g = 2. 004 probably due to a stabilized flavin semiquinone. Three genes from C. symbiosum coding for components D (hgdA and hgdB) and A (hgdC) were cloned and sequenced. Primer extension experiments indicated that the genes are transcribed in the order hgdCAB from an operon only half the size of that from A. fermentans. Sequence comparisons detected a close relationship to the dehydratase system from A. fermentans and HgdA from Fusobacterium nucleatum, as well as to putative proteins of unknown function from Archaeoglobus fulgidus. Lower, but significant, identities were found with putative enzymes from several methanogenic Archaea and Escherichia coli, as well as with the mechanistically related benzoyl-CoA reductases from the Proteobacteria Rhodopseudomonas palustris and Thauera aromatica.  (+info)

Analysis of the Corynebacterium glutamicum dapA promoter. (34/1396)

Deletion and mutational analysis of the promoter P-dapA from Corynebacterium glutamicum was performed to identify regions and particular nucleotides important for its function. An extended -10 region and a stretch of six T's at positions -55 to -50 were found to be the most important elements in the promoter function. The results of mutational analysis of P-dapA are consistent with the conclusions of statistical computer-aided analysis of 44 C. glutamicum promoter sequences.  (+info)

Overexpression of pterin-4a-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor 1 in human colon cancer. (35/1396)

Pterin-4a-carbinolamine dehydratase (PCD) is a bifunctional protein also known as DCoH (dimerization co-factor of hepatocyte nuclear factor 1 (HNF1)). PCD/DCoH modulates the DNA binding specificity of HNF1, thus acting on its transcriptional activity. In addition, it participates in the recycling of tetrahydrobiopterin (BH(4)), an essential cofactor of several metabolic reactions. We investigated colorectal tumors and colorectal tumor cell lines as compared to normal colon samples in search of a potential differential expression of PCD/DCoH. Immunohistochemistry was conducted on 20 human colorectal tumors and 20 normal samples using a specific polyclonal antibody. Immunoblotting and RT-PCR analysis for PCD/DCoH and HNF1 were also performed on both human tissues and CACO-2 and HT-29 cell lines. All of the 20 tumors and both colon cancer cell lines presented a strong and widespread immunoreactivity for PCD/DCoH, contrasting with the absence of expression in the normal epithelia. We thus report the massive overexpression of PCD/DCoH in colon tumors, which is in striking contrast with the absence of staining in normal counterparts. The sharp contrast in the expression of a modulator of transcriptional activity between tumoral and normal cells may have a physiopathological role. PCD/DCoH could potentially be a new marker of malignant colon cells in vivo.  (+info)

End-product control of expression of branched-chain amino acid biosynthesis genes in Streptomyces coelicolor A3(2): paradoxical relationships between DNA sequence and regulatory phenotype. (36/1396)

The branched-chain protein amino acids isoleucine, valine and leucine can provide precursors for synthesis of complex polyketide secondary metabolites in streptomycetes; therefore the regulation of their own synthesis is of interest. DNA sequences upstream of ilvBNC, ilvD, leuA, leuB, ilvE and leuCD in Streptomyces coelicolor A3(2) have been obtained in this laboratory or as part of the S. coelicolor genome sequencing project. Upstream of ilvB and leuA, typical features of classical attenuator systems can be discerned, in particular hypothetical short ORFs with runs of Ile/Val/Leu and Leu codons, respectively. No such features are apparent upstream of other genes or gene clusters present. All five upstream regions were fused to xylE (encoding catechol dioxygenase, CO) as a reporter gene in the SCP2*-based low-copy-number vector pIJ2839. All wild-type regions showed strong depression of CO activity in the presence of all three branched-chain amino acids whether or not the attenuation features were present. By site-directed mutagenesis, the Ile/Val/Leu and Leu triplets in the putative attenuator peptides for ilvB and leuA were replaced by ones for other amino acids. In the case of ilvB, this had no effect at all; for leuA, the wild-type regulatory phenotype persisted in at least some experiments. It was concluded that (i) an unknown regulatory mechanism must be operating in the ilv/leu system of S. coelicolor A3(2) in place of classical attenuation; and (ii) it is unsafe to infer the functioning of a regulatory mechanism from sequence homologies alone.  (+info)

Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. (37/1396)

In budding yeast (Saccharomyces cerevisiae), the majority of box H/ACA small nucleolar RNPs (snoRNPs) have been shown to direct site-specific pseudouridylation of rRNA. Among the known protein components of H/ACA snoRNPs, the essential nucleolar protein Cbf5p is the most likely pseudouridine (Psi) synthase. Cbf5p has considerable sequence similarity to Escherichia coli TruBp, a known Psi synthase, and shares the "KP" and "XLD" conserved sequence motifs found in the catalytic domains of three distinct families of known and putative Psi synthases. To gain additional evidence on the role of Cbf5p in rRNA biosynthesis, we have used in vitro mutagenesis techniques to introduce various alanine substitutions into the putative Psi synthase domain of Cbf5p. Yeast strains expressing these mutated cbf5 genes in a cbf5Delta null background are viable at 25 degrees C but display pronounced cold- and heat-sensitive growth phenotypes. Most of the mutants contain reduced levels of Psi in rRNA at extreme temperatures. Substitution of alanine for an aspartic acid residue in the conserved XLD motif of Cbf5p (mutant cbf5D95A) abolishes in vivo pseudouridylation of rRNA. Some of the mutants are temperature sensitive both for growth and for formation of Psi in the rRNA. In most cases, the impaired growth phenotypes are not relieved by transcription of the rRNA from a polymerase II-driven promoter, indicating the absence of polymerase I-related transcriptional defects. There is little or no abnormal accumulation of pre-rRNAs in these mutants, although preferential inhibition of 18S rRNA synthesis is seen in mutant cbf5D95A, which lacks Psi in rRNA. A subset of mutations in the Psi synthase domain impairs association of the altered Cbf5p proteins with selected box H/ACA snoRNAs, suggesting that the functional catalytic domain is essential for that interaction. Our results provide additional evidence that Cbf5p is the Psi synthase component of box H/ACA snoRNPs and suggest that the pseudouridylation of rRNA, although not absolutely required for cell survival, is essential for the formation of fully functional ribosomes.  (+info)

Cloning and expression of recombinant human pineal tryptophan hydroxylase in Escherichia coli: purification and characterization of the cloned enzyme. (38/1396)

The first step in the biosynthesis of melatonin in the pineal gland is the hydroxylation of tryptophan to 5-hydroxytryptophan. A cDNA of human tryptophan hydroxylase (TPH) was cloned from a library of human pineal gland and expressed in Escherichia coli. This cDNA sequence is identical to the cDNA sequence published from the human carcinoid tissue [1]. This human pineal hydroxylase gene encodes a protein of 444 amino acids and a molecular mass of 51 kDa estimated for the purified enzyme. Tryptophan hydroxylase from human brainstem exhibits high sequence homology (93% identity) with the human pineal hydroxylase. The recombinant tryptophan hydroxylase exists in solution as tetramers. The expressed human pineal tryptophan hydroxylase has a specific activity of 600 nmol/min/mg when measured in the presence of tetrahydrobiopterin and L-tryptophan. The enzyme catalyzes the hydroxylation of tryptophan and phenylalanine at comparable rates. Phosphorylation of the hydroxylase by protein kinase A or calmodulin-dependent kinase II results in the incorporation of 1 mol of phosphate/mol of subunit, but this degree of phosphorylation leads to only a modest (30%) increase in BH(4)-dependent activity when assayed in the presence of 14-3-3. Rapid scanning ultraviolet spectroscopy has revealed the formation of the transient intermediate compound, 4alpha-hydroxytetrahydrobiopterin, during the hydroxylation of either tryptophan or phenylalanine catalyzed by the recombinant pineal TPH.  (+info)

Expression of hepatitis B virus polymerase in Ty1-his3AI retroelement of Saccharomyces cerevisiae. (39/1396)

Hepatitis B virus (HBV), although a DNA virus, replicates using reverse transcriptase encoded by the HBV polymerase (pol) gene. The biochemical dissection of HBV pol has been hampered by failure to liberate enzymatically active protein from nucleocapsids. Here, we have employed a yeast-based genetic approach to express the HBV reverse transcriptase. In this strategy, the reverse transcriptase of yeast retrotransposon Ty1 element is replaced with the HBV pol gene to produce the hybrid Ty1/HBV element. Additionally, the indicator gene his3AI is combined in an antisense orientation to the transcripts of the hybrid Ty1/HBVRT element. The splicing of his3AI, cDNA synthesis of the Ty1/HBVRT RNA and subsequent integration relies on the reverse transcriptase activity. The production of histidine prototrophs results from the successful reverse transcription of Ty1/HBVRThis3AI transcripts followed by either homologous recombination or integrase-mediated insertion and subsequent expression of HIS3 gene. Using this approach we successfully detected the reverse transcriptase activity of HBV in yeast strains defective in endogenous Ty1 expression. Consistent with the unique priming activity associated with HBV pol, the minus strand DNA synthesis was protein-primed. Deletion of HBV reverse transcriptase (RT) or RNase H domains resulted in a dramatic drop in histidine prototrophs. The addition of HBV encoded HBx protein in virus-like particles during in vitro RT reaction stimulated the RT reaction by severalfold. Furthermore, in the presence of 3TC, a known inhibitor of HBV reverse transcriptase, yeast His(+) growth of His protrophs was not observed. Thus, this approach, which is based on genetic selection in yeast, is safe, economic, and a reliable strategy with a potential for large scale screening of cofactors and inhibitors of HBV polymerase functions.  (+info)

Genetic organization and characteristics of the 3-(3-hydroxyphenyl)propionic acid degradation pathway of Comamonas testosteroni TA441. (40/1396)

Comamonas testosteroni TA441 degrades 3-(3-hydroxyphenyl)propionate (3HPP) via the meta pathway. A gene cluster required for degradation of 3HPP was cloned from strain TA441 and sequenced. The genes encoding six catabolic enzymes, a flavin-type hydroxylase (mhpA), extradiol dioxygenase (mhpB), 2-keto-4-pentenoate hydratase (mhpD), acetaldehyde dehydrogenase (acylating) (mhpF), 4-hydroxy-2-ketovalerate aldolase (mhpE) and the meta cleavage compound hydrolase (mhpC), were found in this cluster, encoded in this order. mhpD and mhpF were separated by two genes, orf4 and orf5, which were not necessary for growth on 3HPP. The gene mhpR, encoding a putative transcriptional activator of the IcIR family, was located adjacent to mhpA in the opposite orientation. Disruption of the mhpB or mhpR genes affected growth on 3HPP or trans-3-hydroxycinnamate. The mhpB and mhpC gene products showed high specificity for 3-(2,3-dihydroxyphenyl)propionate (DHPP) and the meta cleavage compound produced from DHPP, respectively.  (+info)