Loading...
(1/2497) Spontaneous heterosis in larval life-history traits of hemiclonal frog hybrids.

European water frog hybrids Rana esculenta (Rana ridibunda x Rana lessonae) reproduce hemiclonally, transmitting only their ridibunda genome to gametes. We compared fitness-related larval life-history traits of natural R. esculenta from Poland with those of the two sympatric parental species and of newly generated F1 hybrids. Compared with either parental species, F1 hybrid offspring had higher survival, higher early growth rates, a more advanced developmental stage by day 49, and earlier metamorphosis, but similar mass at metamorphosis. R. esculenta from natural lineages had trait values intermediate between those of F1 offspring and of the two parental species. The data support earlier observations on natural R. esculenta that had faster larval growth, earlier metamorphosis, and higher resistance to hypoxic conditions compared with either parental species. Observing larval heterosis in F1 hybrids in survival, growth rate, and time to metamorphosis, however, at an even higher degree than in hybrids from natural lineages, demonstrates that heterosis is spontaneous and results from hybridity per se rather than from subsequent interclonal selection; in natural lineages the effects of hybridity and of clonal history are confounded. This is compelling evidence for spontaneous heterosis in hybrid clonals. Results on hemiclonal fish hybrids (Poeciliopsis) showed no spontaneous heterosis; thus, our frog data are not applicable to all hybrid clonals. Our data do show, however, that heterosis is an important potential source for the extensively observed ecological success of hybrid clonals. We suggest that heterosis and interclonal selection together shape fitness of natural R. esculenta lineages.  (+info)

(2/2497) Molecular characterization of two endogenous double-stranded RNAs in rice and their inheritance by interspecific hybrids.

We completely sequenced 13,936 nucleotides (nt) of a double-stranded RNA (dsRNA) of wild rice (W-dsRNA). A single long open reading frame (13,719 nt) containing the conserved motifs of RNA-dependent RNA polymerase and RNA helicase was located in the coding strand. The identity between entire nucleotide sequence of W-dsRNA and that of the dsRNA of temperate japonica rice (J-dsRNA, 13,952 nt) was 75.5%. A site-specific discontinuity (nick) was identified at nt 1,197 from the 5' end of the coding strand of W-dsRNA. This nick is also located at nt 1,211 from the 5' end in the coding strand of J-dsRNA. The dsRNA copy number was increased more than 10-fold in pollen grains of both rice plants. This remarkable increase may be responsible for the highly efficient transmission of J-dsRNA via pollen that we already reported. J-dsRNA and W-dsRNA were also efficiently transmitted to interspecific F1 hybrids. Seed-mediated dsRNA transmission to F2 plants was also highly efficient when the maternal parent was wild rice. The efficiency of dsRNA transmission to F2 plants was reduced when the maternal parent was temperate japonica rice; however, the reduced rates in F2 plants were returned to high levels in F3 plants.  (+info)

(3/2497) Construction and analysis of hybrid Escherichia coli-Bacillus subtilis dnaK genes.

The highly conserved DnaK chaperones consist of an N-terminal ATPase domain, a central substrate-binding domain, and a C-terminal domain whose function is not known. Since Bacillus subtilis dnaK was not able to complement an Escherichia coli dnaK null mutant, we performed domain element swap experiments to identify the regions responsible for this finding. It turned out that the B. subtilis DnaK protein needed approximately normal amounts of the cochaperone DnaJ to be functional in E. coli. The ATPase domain and the substrate-binding domain form a species-specific functional unit, while the C-terminal domains, although less conserved, are exchangeable. Deletion of the C-terminal domain in E. coli DnaK affected neither complementation of growth at high temperatures nor propagation of phage lambda but abolished degradation of sigma32.  (+info)

(4/2497) A novel ontogenetic pathway in hybrid embryos between species with different modes of development.

To investigate the bases for evolutionary changes in developmental mode, we fertilized eggs of a direct-developing sea urchin, Heliocidaris erythrogramma, with sperm from a closely related species, H. tuberculata, that undergoes indirect development via a feeding larva. The resulting hybrids completed development to form juvenile adult sea urchins. Hybrids exhibited restoration of feeding larval structures and paternal gene expression that have been lost in the evolution of the direct-developing maternal species. However, the developmental outcome of the hybrids was not a simple reversion to the paternal pluteus larval form. An unexpected result was that the ontogeny of the hybrids was distinct from either parental species. Early hybrid larvae exhibited a novel morphology similar to that of the dipleurula-type larva typical of other classes of echinoderms and considered to represent the ancestral echinoderm larval form. In the hybrid developmental program, therefore, both recent and ancient ancestral features were restored. That is, the hybrids exhibited features of the pluteus larval form that is present in both the paternal species and in the immediate common ancestor of the two species, but they also exhibited general developmental features of very distantly related echinoderms. Thus in the hybrids, the interaction of two genomes that normally encode two disparate developmental modes produces a novel but harmonious ontongeny.  (+info)

(5/2497) Introgression through rare hybridization: A genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland.

In this article we describe the structure of a hybrid zone in Argyll, Scotland, between native red deer (Cervus elaphus) and introduced Japanese sika deer (Cervus nippon), on the basis of a genetic analysis using 11 microsatellite markers and mitochondrial DNA. In contrast to the findings of a previous study of the same population, we conclude that the deer fall into two distinct genetic classes, corresponding to either a sika-like or red-like phenotype. Introgression is rare at any one locus, but where the taxa overlap up to 40% of deer carry apparently introgressed alleles. While most putative hybrids are heterozygous at only one locus, there are rare multiple heterozygotes, reflecting significant linkage disequilibrium within both sika- and red-like populations. The rate of backcrossing into the sika population is estimated as H = 0.002 per generation and into red, H = 0.001 per generation. On the basis of historical evidence that red deer entered Kintyre only recently, a diffusion model evaluated by maximum likelihood shows that sika have increased at approximately 9.2% yr-1 from low frequency and disperse at a rate of approximately 3.7 km yr-1. Introgression into the red-like population is greater in the south, while introgression into sika varies little along the transect. For both sika- and red-like populations, the degree of introgression is 30-40% of that predicted from the rates of current hybridization inferred from linkage disequilibria; however, in neither case is this statistically significant evidence for selection against introgression.  (+info)

(6/2497) A dynamically regulated 14-3-3, Slob, and Slowpoke potassium channel complex in Drosophila presynaptic nerve terminals.

Slob is a novel protein that binds to the carboxy-terminal domain of the Drosophila Slowpoke (dSlo) calcium-dependent potassium (K(Ca)) channel. A yeast two-hybrid screen with Slob as bait identifies the zeta isoform of 14-3-3 as a Slob-binding protein. Coimmunoprecipitation experiments from Drosophila heads and transfected cells confirm that 14-3-3 interacts with dSlo via Slob. All three proteins are colocalized presynaptically at Drosophila neuromuscular junctions. Two serine residues in Slob are required for 14-3-3 binding, and the binding is dynamically regulated in Drosophila by calcium/calmodulin-dependent kinase II (CaMKII) phosphorylation. 14-3-3 coexpression dramatically alters dSlo channel properties when wild-type Slob is present but not when a double serine mutant Slob that is incapable of binding 14-3-3 is present. The results provide evidence for a dSlo/Slob/14-3-3 regulatory protein complex.  (+info)

(7/2497) Genetics of graft-versus-host disease, I. A locus on chromosome 1 influences development of acute graft-versus-host disease in a major histocompatibility complex mismatched murine model.

Graft-versus-host disease (GVHD) is the major complication occurring after bone marrow transplantation. The severity of GVHD varies widely, with this variation generally being attributed to variation in the degree of disparity between host and donor for minor histocompatibility antigens. However, it is also possible that other forms of polymorphism, such as polymorphisms in immune effector molecules, might play a significant role in determining GVHD severity. In order to investigate this hypothesis, we are studying the genetic factors that influence GVHD development in a murine model. We here report the first results of this analysis, which demonstrate that a locus on Chromosome 1 of the mouse, and possibly also a locus on Chromosome 4, exert considerable influence over the development of one aspect of acute GVHD - splenomegaly - in a parent-->F1 murine model. These results demonstrate that non-MHC genes can exert quite significant effects on the development of GVHD-associated pathology and that gene mapping can be used as a tool to identify these loci. Further analysis of such loci will allow identification of the mechanism whereby they influence GVHD and may lead in the future to improved selection of donors for human bone marrow transplantation.  (+info)

(8/2497) Suppressor T-cell activity in responder X nonresponder (C57BL/10 X DBA/1)F1 spleen cells responsive to L-glutamic acid60-L-alanine30-L-tyrosine10.

The ability of spleen cells from (responder X nonresponder)F(1) mice immunized with various GAT-Mphi, GAT-MBSA, and soluble GAT to develop IgG GAT-specific PFC responses in vitro after stimulation with responder and nonresponder parental and F(1) GAT-Mphi, was investigated. F(1) spleen cells from mice immunized with F(1) GAT-Mphi or GAT-MBSA developed secondary responses to responder and nonresponder parental and F(1) GAT- Mphi, but not to unrelated third party GAT-Mphi. Spleen cells from F(1) mice immunized with either parental GAT-Mphi developed secondary responses to F(1) GAT-Mphi and only the parental GAT-Mphi used for immunization in vivo. Soluble GAT-primed F(1) spleen cells responded to F(1) and responder parental, but not nonresponder parental, GAT-Mphi. Simultaneous immunization in vivo with the various GAT-Mphi or GAT-MBSA plus soluble GAT modulated the response pattern of these F(1) spleen cells such that they developed secondary responses only to F(1) and parental responder GAT-Mphi regardless of the response pattern observed after immunization with the various GAT-Mphi or GAT-MBSA alone. These observations demonstrate the critical importance of the physical state of the GAT used for immunization in determining the subsequent response pattern of immune F(1) spleen cells to the parental and F(1) GAT-Mphi. Further, suppressor T cells, capable of inhibiting primary responses to GAT by virgin F(1) spleen cells stimulated by nonresponder parental GAT-Mphi, were demonstrated in spleens of F(1) mice immunized with soluble GAT, but not those primed with F(1) GAT-Mphi. Because responder parental mice develop both helper and suppressor T cells after immunization with GAT-Mphi, and soluble GAT preferentially stimulates suppressor T cells whereas GAT-Mphi stimulate helper T cells in nonresponder parental mice, these observations suggest that distinct subsets of T cells exist in F(1) mice which behave phenotypically as responder and nonresponder parental T cells after immunization with soluble GAT and GAT- Mphi.  (+info)