Inhibition of nitrifiers and methanotrophs from an agricultural humisol by allylsulfide and its implications for environmental studies. (1/118)

Allylsulfide, an inhibitor of ammonia monooxygenase, was tested to determine its ability to inhibit nitrification and methane oxidation in pure cultures, in agricultural humisol enrichment cultures, and in humisol slurries. We confirmed that allylsulfide is a differential inhibitor of cultures of nitrifiers and methanotrophs at concentrations of 1 and 200 microM, respectively, which result in 50% inhibition. However, although a nitrifying enrichment culture added to sterilized humisol was inhibited 50% by 4 microM allylsulfide, 500 microM allylsulfide was necessary for 50% inhibition of the endogenous nitrifying activity in nonsterile humisol. We concluded that native nitrifiers were protected, possibly by being in colonial aggregates or sheltered microenvironments.  (+info)

Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. (2/118)

The dissimilatory Fe(III) reducer Geobacter metallireducens reduced Fe(III) bound in humic substances, but the concentrations of Fe(III) in a wide range of highly purified humic substances were too low to account for a significant portion of the electron-accepting capacities of the humic substances. Furthermore, once reduced, the iron in humic substances could not transfer electrons to Fe(III) oxide. These results suggest that other electron-accepting moieties in humic substances, such as quinones, are the important electron-accepting and shuttling agents under Fe(III)-reducing conditions.  (+info)

The presence of humic substances and DNA in RNA extracts affects hybridization results. (3/118)

RNA extracts obtained from environmental samples are frequently contaminated with coextracted humic substances and DNA. It was demonstrated that the response in rRNA-targeted oligonucleotide probe hybridizations decreased as the concentrations of humic substances and DNA in RNA extracts increased. The decrease in hybridization signal in the presence of humic substances appeared to be due to saturation of the hybridization membrane with humic substances, resulting in a lower amount of target rRNA bound to the membrane. The decrease in hybridization response in the presence of low amounts of DNA may be the result of reduced rRNA target accessibility. The presence of high amounts of DNA in RNA extracts resulted in membrane saturation. Consistent with the observations for DNA contamination, the addition of poly(A) to RNA extracts, a common practice used to prepare RNA dilutions for membrane blotting, also reduced hybridization signals, likely because of reduced target accessibility and membrane saturation effects.  (+info)

The research on antioxidative properties of TOLPA Peat Preparation and its fractions. (4/118)

The protective and therapeutic role of TPP and its fractions against lipid peroxidation in the mitochondria from human placenta as a model for experiments was evaluated. Both TPP and its fractions cause the decrease in MDA production. The antioxidant force of TPP and its fractions with antioxidant force of vitamin E was compared.  (+info)

Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. (5/118)

The anaerobic microbial oxidation of toluene to CO(2) coupled to humus respiration was demonstrated by use of enriched anaerobic sediments from the Amsterdam petroleum harbor (APH) and the Rhine River. Both highly purified soil humic acids (HPSHA) and the humic quinone moiety model compound anthraquinone-2,6-disulfonate (AQDS) were utilized as terminal electron acceptors. After 2 weeks of incubation, 50 and 85% of added uniformly labeled [(13)C]toluene were recovered as (13)CO(2) in HPSHA- and AQDS-supplemented APH sediment enrichment cultures, respectively; negligible recovery occurred in unsupplemented cultures. The conversion of [(13)C]toluene agreed with the high level of recovery of electrons as reduced humus or as anthrahydroquinone-2,6-disulfonate. APH sediment was also able to use nitrate and amorphous manganese dioxide as terminal electron acceptors to support the anaerobic biodegradation of toluene. The addition of substoichiometric amounts of humic acids to bioassay reaction mixtures containing amorphous ferric oxyhydroxide as a terminal electron acceptor led to more than 65% conversion of toluene (1 mM) after 11 weeks of incubation, a result which paralleled the partial recovery of electron equivalents as acid-extractable Fe(II). Negligible conversion of toluene and reduction of Fe(III) occurred in these bioassay reaction mixtures when humic acids were omitted. The present study provides clear quantitative evidence for the mineralization of an aromatic hydrocarbon by humus-respiring microorganisms. The results indicate that humic substances may significantly contribute to the intrinsic bioremediation of anaerobic sites contaminated with priority pollutants by serving as terminal electron acceptors.  (+info)

Formation of stable chlorinated hydrocarbons in weathering plant material. (6/118)

Though several chlorinated organic compounds produced by humans are carcinogenic and toxic, some are also produced by the biotic and abiotic processes in the environment. In situ x-ray spectroscopy data indicate that natural organic matter in soils, sediments, and natural waters contain stable, less volatile organic compounds with chlorinated phenolic and aliphatic groups as the principal Cl forms. These compounds are formed at rapid rates from the transformation of inorganic Cl during humification of plant material and, thus, play a critical role in the cycling of Cl and of several major and trace elements in the environment and may influence human health.  (+info)

Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. (7/118)

Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included simple volatile fatty acids such as propionate, butyrate, and valerate as well as simple organic acids such as lactate and pyruvate. Analysis of the complete sequences of the 16S rRNA genes revealed that the isolates were not closely related to each other and were phylogenetically diverse, with members in the alpha, beta, gamma, and delta subdivisions of the PROTEOBACTERIA: Most of the isolates were closely related to known genera not previously recognized for their ability to couple growth to HS oxidation, while one of the isolates represented a new genus in the delta subclass of the PROTEOBACTERIA: The results presented here demonstrate that microbial oxidation of HS is a ubiquitous metabolism in the environment. This study represents the first description of HS-oxidizing isolates and demonstrates that microorganisms capable of HS oxidation are phylogenetically diverse.  (+info)

Speciation of molybdenum in river water by size fractionation and catalytic determination. (8/118)

A speciation scheme of trace molybdenum was proposed for river water based on size fractionation by filtration and ultrafiltration and the catalytic spectrophotometric determination of the reactive molybdenum concentration (CR). The total concentration (CT) of molybdenum was determined by the same method after acid decomposition to obtain the concentration (CT - CR) of unreactive molybdenum. Most molybdenum in natural river-water samples was found to be reactive species. A large part of the molybdenum was found in the fraction of molecular weight (MW) < 10(3), and was estimated to be MoO4(2-) from the chemical equilibria of molybdate ions. The residual part of molybdenum was found in the colloidal and particle fractions (MW > or = 10(4)), and was characterized as reactive molybdenum adsorbed or complexed on humic iron aggregates. The coexistence of silicate contributed to a decrease of the particle size of humic iron aggregates associated with molybdenum. The above-mentioned speciation results were confirmed by an analysis of artificial samples. The changes in the fractionation results by acidification (0.1 M HCl) were also used to characterize molybdenum in natural water.  (+info)