Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. (17/1891)

Vascular endothelial growth factor (VEGF) is a key regulator of developmental, physiological, and tumor angiogenesis. Upregulation of VEGF expression by hypoxia appears to be a critical step in the neovascularization of solid cancers. The VEGF mRNA is intrinsically labile, but in response to hypoxia the mRNA is stabilized. We have systematically analyzed the regions in the VEGF mRNA that are responsible for its lability under normoxic conditions and for stabilization in response to hypoxia. We find that the VEGF mRNA not only contains destabilizing elements in its 3' untranslated region (3'UTR), but also contains destabilizing elements in the 5'UTR and coding region. Each region can independently promote mRNA degradation, and together they act additively to effect rapid degradation under normoxic conditions. Stabilization of the mRNA in response to hypoxia is completely dependent on the cooperation of elements in each of the 5'UTR, coding region, and 3'UTR. Combinations of any of two of these three regions were completely ineffective in responding to hypoxia, whereas combining all three regions allowed recapitulation of the hypoxic stabilization seen with the endogenous VEGF mRNA. We conclude that multiple regions in the VEGF mRNA cooperate both to ensure the rapid degradation of the mRNA under normoxic conditions and to allow stabilization of the mRNA in response to hypoxia. Our findings highlight the complexity of VEGF gene expression and also reveal a mechanism of gene regulation that could become the target for strategies of therapeutic intervention.  (+info)

Depression of liver protein synthesis during surgery is prevented by growth hormone. (18/1891)

This study was undertaken to elucidate the specific effects of growth hormone (GH) on liver protein metabolism in humans during surgery. Otherwise healthy patients scheduled for elective laparoscopic cholecystectomy were randomized into controls (n = 9) or pretreatment with 12 units of GH for 1 day (GH 1, n = 9) or daily for 5 days (GH 5, n = 10). The fractional synthesis rate of liver proteins, as assessed by flooding with [2H5]phenylalanine, was higher in the GH 5 group (22.0 +/- 6.9%/day, mean +/- SD, P < 0.05) than in the control (16.1 +/- 3.1%/day) and GH 1 (16.5 +/- 5.5%/day) groups. During surgery, the fraction of polyribosomes in the liver, as assessed by ribosome analysis, decreased in the control group by approximately 12% (P < 0.01) but did not decrease in the GH-treated groups. In addition, the concentrations of the essential amino acids and aspartate in the liver decreased in response to GH treatment. In conclusion, GH pretreatment decreases hepatic free amino acid concentrations and preserves liver protein synthesis during surgery.  (+info)

Insulin but not growth hormone stimulates protein anabolism in skin wound and muscle. (19/1891)

We have measured protein kinetics in the scalded skin and normal muscle in anesthetized rabbits. On the 7th day after ear scald, L-[ring-13C6]phenylalanine was infused as a tracer, and the ear and hindlimb were used as arteriovenous units to reflect skin and muscle protein kinetics. Insulin was infused at 0.6 or 2.3-3.4 mU. kg-1. min-1 in the low-dose and high-dose insulin groups. In the growth hormone group, recombinant human growth hormone was administered at 2 mg. kg-1. day-1 after the ear was scalded. The results were compared with a control group in which the ear was scalded but otherwise was not treated. In the control group, net protein loss in the scalded skin and muscle was 23.1 +/- 21.4 and 3.9 +/- 1.5 micromol. 100 g-1. h-1, respectively. Insulin infusion at either high or low dose reduced net protein loss to near zero by inhibiting proteolysis. In contrast, growth hormone treatment had no anabolic effect on either tissue. In conclusion, insulin but not growth hormone has an anabolic effect on scalded skin and normal muscle; low-dose insulin is as effective in achieving an anabolic effect on both tissues, with less hypoglycemic response than high-dose insulin.  (+info)

Effects of granulocyte colony-stimulating factor on night sleep in humans. (20/1891)

Numerous animal studies suggest that cytokines such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) mediate increased sleep amount and intensity observed during infection and are, moreover, involved in physiological sleep regulation. In humans the role of cytokines in sleep-wake regulation is largely unknown. In a single-blind, placebo-controlled study, we investigated the effects of granulocyte colony-stimulating factor (G-CSF, 300 microgram sc) on the plasma levels of cytokines, soluble cytokine receptors, and hormones as well as on night sleep. G-CSF did not affect rectal temperature or the plasma levels of cortisol and growth hormone but did induce increases in the plasma levels of IL-1 receptor antagonist and both soluble TNF receptors within 2 h after injection. In parallel, the amount of slow-wave sleep and electroencephalographic delta power were reduced, indicating a lowered sleep intensity. We conclude that G-CSF suppresses sleep intensity via increased circulating amounts of endogenous antagonists of IL-1beta and TNF-alpha activity, suggesting that these cytokines are involved in human sleep regulation.  (+info)

A 500-bp region, approximately 40 kb upstream of the human CYP19 (aromatase) gene, mediates placenta-specific expression in transgenic mice. (21/1891)

In humans, aromatase P450 (product of CYP19 gene), which catalyzes conversion of C19 steroids to estrogens, is expressed in a number of tissues, including ovary, adipose, and syncytiotrophoblast of the placenta. The 5' untranslated regions of CYP19 mRNA transcripts in these tissues are encoded by different tissue-specific first exons, which are spliced onto a common site just upstream of the translation initiation site in exon II. In placenta, the 5' untranslated region of CYP19 mRNA transcripts is encoded by exon I.1, which lies approximately 40 kb upstream of exon II. To map genomic sequences required for placenta-specific CYP19 expression, fusion genes containing 2,400 and 501 bp of placenta-specific exon I.1 5' flanking DNA linked to the human growth hormone gene (hGH), as reporter, were introduced into transgenic mice. Expression of CYP19(I.1):hGH fusion genes containing as little as 501 bp of 5' flanking DNA was placenta-specific and developmentally regulated. Furthermore, transgene expression occurred specifically in the labyrinthine trophoblast of the mouse placenta, which contains syncytial cells that may be analogous to the human syncytiotrophoblast. We show that a relatively small segment of DNA (approximately 500 bp) >40 kb upstream of the protein coding region of a human gene is able to direct expression in an appropriate tissue- and cell-specific manner in transgenic mice. These findings suggest that 5' flanking DNA within 501 bp of exon I.1 of the human CYP19 gene contains cis-acting elements that bind placenta-specific transcription factors that are conserved between humans and mice.  (+info)

Growth hormone promotes somatic and skeletal muscle growth recovery in rats following chronic protein-energy malnutrition. (22/1891)

The efficacy of recombinant human growth hormone (GH) and/or a diet enriched in protein and energy to improve growth recovery following prolonged malnutrition was examined in male rats food-restricted from birth until 120 d of age. At d 121, restricted rats were randomly assigned to recovery groups receiving either a control or enriched diet with or without daily subcutaneous injections of GH. Rats were killed after 16 or 47 d of recovery. At d 16, GH treatment stimulated liver, heart, plantaris, soleus, carcass and body weight gain and inhibited fat gain when compared to recovery controls. Rats receiving GH also exhibited the highest serum insulin-like growth factor-I (IGF-I) concentrations and total muscle protein. At d 47, GH effects on body and muscle recovery were minimal, and differences among recovery groups in serum IGF-I concentration and total muscle protein were no longer present. Consumption of an enriched diet increased fat pad and liver mass, but did not promote muscle recovery. There were no differences among treatment groups in skeletal muscle IGF-I mRNA levels at d 16 or 47. In summary, GH had positive effects on somatic and skeletal muscle growth early in the recovery process, possibly via endocrine IGF-I-stimulated protein accretion. In contrast, the enriched diet promoted fat deposition with no impact on skeletal muscle growth recovery.  (+info)

Reduced bone mineral density in young adults following cure of acute lymphoblastic leukaemia in childhood. (23/1891)

Bone mineral density (BMD), serum osteocalcin and type I collagen C-telopeptide (ICTP) were assessed in a cohort of 31 (16 males) adults who had received cranial irradiation in childhood as part of their treatment for acute lymphoblastic leukaemia (ALL). Markers of bone turnover were compared with those of 35 age and body mass index (BMI) matched young adults (18 male). Growth hormone status had previously been determined using an insulin tolerance test and arginine stimulation test. Eight patients were classified as severe growth hormone deficiency (group 1), 12 patients as growth hormone insufficient (group 2) and 11 patients as normal (group 3). Vertebral trabecular BMD, lumbar spine and femoral neck integral BMD and forearm cortical bone mineral content (BMC) was measured 17.8 (6.8-28.6) years after cranial irradiation and was expressed as Z (standard deviation) scores. There was a significant reduction in vertebral trabecular BMD (median Z score -1.25, P < 0.001), in lumbar spine integral BMD (median Z score -0.74, P = 0.001), in forearm cortical BMC (median Z score -1.35, P < 0.001), and less so in femoral neck integral BMD (median Z score -0.43, P = 0.03). There was no difference among the growth hormone status groups for the following BMD measurements: vertebral trabecular BMD, lumbar spine integral BMD or femoral neck integral BMD (P = 0.8, P = 0.96 and P = 0.4 respectively). There was only a marginal significant difference for BMD at the wrist between growth hormone status groups (P = 0.04). There was no correlation between the BMD measurements with time since or age at diagnosis and no difference in markers of bone turnover between patients and controls; median serum osteocalcin 13.3 and 12.0 ng ml (P = 0.7), respectively, and for ICTP 5.0 and 4.9 microg L (P = 0.67) respectively. In conclusion, there is a highly significant reduction in BMD in young adults following treatment for ALL in childhood. The reduction in BMD affects both trabecular and cortical bone but did not seem to be related to time since diagnosis, age at diagnosis, or current growth hormone status. Possible explanations include a direct effect of chemotherapy, steroids or both on bone during childhood and hence an effect on the accretion of bone mass. In view of the risk of fractures in patients with osteopenia, adults treated for ALL in childhood may be at an increased risk of bone fractures later in life irrespective of the underlying cause of the osteopenia and thus intervention should be considered.  (+info)

Failure of IGF-I and IGFBP-3 to diagnose growth hormone insufficiency. (24/1891)

BACKGROUND: Growth hormone insufficiency (GHI) is diagnosed conventionally by short stature and slow growth, and is confirmed by diminished peak GH response to a provocation test. Insulin-like growth factor I (IGF-I) and IGF binding protein 3 (IGFBP-3) have previously been considered individually OBJECTIVE: To test the hypothesis that the combined analysis of IGF-I and IGFBP-3 could act as a surrogate marker for the diagnosis of GHI. DESIGN: Reference ranges for IGF-I and IGFBP-3 were calculated using 521 normal individuals. A retrospective analysis was performed on 318 children referred for investigation of short stature. RESULTS: No significant difference was found between either the IGF-I or IGFBP-3 standard deviation scores (SDSs) in children with and without GHI. If the requirement were for both tests to be positive (< -2 SDS) for a diagnosis of GHI, then 99% of children without GHI would be correctly identified; however, the sensitivity of the test was only 15%. CONCLUSIONS: Neither IGF-I nor IGFBP-3 alone is a marker for GHI. In addition, they cannot be used as an effective screening test in combination.  (+info)