Effects of boar contact and housing conditions on estrus expression in weaned sows. (33/1048)

Our objective was to study the effects of housing conditions and the amount of boar contact in a protocol for estrus detection on estrus detection rate, timing of onset of estrus, duration of estrus, and timing of ovulation. After weaning, 130 multiparous sows were assigned to three treatments: HI, in which 52 sows were housed individually in crates and received a high amount of boar contact during estrus detection; HG, in which 52 sows were housed in groups and received a high amount of boar contact; and NI, in which 26 sows were housed individually in crates and received a normal amount of boar contact. Estrus detection was performed every 8 h. For each treatment, the standing response to three levels of stimuli was recorded: a back pressure test (BPT) by a man (man-estrus), presence of a teaser boar (spontaneous-estrus), and BPT in the presence of a teaser boar (boar-estrus). In addition, for HI and HG, the standing response to a fourth level of stimuli was recorded: BPT in a detection-mating area, surrounded by four boar pens (DMA-estrus). To detect ovulation, ultrasonography was performed every 4 h during estrus. Of 117 sows that ovulated, 46% showed man-estrus, 56% spontaneous-estrus, 90% boar-estrus, and 97% DMA-estrus. Mean onset of man-estrus was 107 h (SD 26) after weaning, of spontaneous-estrus was 106 h (SD 22) after weaning, of boar-estrus was 99 h (SD 21) after weaning, and of DMA-estrus was 93 h (SD 22) after weaning. Duration of man-estrus was 22 h (SD 14), of spontaneous-estrus was 29 h (SD 16), of boar-estrus was 42 h (SD 20), and of DMA-estrus was 55 h (SD 18). The high amount of boar contact reduced the number of sows showing man-estrus (P < .05; 41% for HG and HI vs 68% for NI) and reduced duration of boar-estrus (P < .05; 43 h for HG and HI vs 52 h for NI). Duration of DMA-estrus for HG and HI was similar to duration of boar-estrus for NI. Onset of estrus and timing of ovulation were not affected by amount of boar contact. Group housing did not affect detection rate and duration of estrus, but it did postpone average onset of estrus by 10 h, paralleled by a postponement of ovulation. In conclusion, estrus expression is similar at the highest level of stimuli in different protocols for estrus detection. Including higher levels of stimuli in a protocol reduces estrus expression at lower levels of stimuli. This reduction indicates adaptation of sows to a given protocol for estrus detection. Group housing can delay ovulation and related behavioral estrus.  (+info)

Spontaneous activities measured continuously by an accelerometer in beagle dogs housed in a cage. (34/1048)

Spontaneous activities in 10 beagle dogs housed in an individual cage were recorded continuously for 2 hr by an accelerometer fixed to dogs and by a video camera. The responses of the accelerometer were compared to movements identified from the video tapes. We found that gross differentiation of quantitative spontaneous activities might be possible by using only the accelerometer if the threshold of the accelerometer and the amount of acceleration volume were set adequately: the responses of the accelerometer at the threshold of 0.10 G with the acceleration number of 251 or more revealed only movements of the whole-body, and those at the threshold of 0.02 G all movements including changes of the part(s) of the body.  (+info)

Preweaning growth curves in Brown Swiss and Pirenaica calves with emphasis on individual variability. (35/1048)

A quadratic polynomial model with random regression coefficients was used to describe preweaning growth curves of two beef cattle breeds widely used in the Spanish Pyrenees, according to genotype and season of birth effects. In addition, parameters of individual variability that can be used in a stochastic model were obtained. Data recorded indoors from birth to weaning of 217 Brown Swiss calves (3,509 observations) born either in spring or autumn (BS-S, BS-A) and 101 spring-born Pirenaica calves (PI-S, 967 observations) were analyzed. A quadratic model accurately fitted the preweaning weights (R2 = .99). Use of random regression coefficients improved the weaning weight adjustment; the residual variance of the model with intercept and linear random coefficients (9.61 kg2) was smaller than that of the model without them (130.03 kg2). Brown Swiss-S and PI-S calves had similar birth weight (40.9 +/- .96 vs 39.4 +/- .73 kg), but BS-S calves achieved significantly higher weaning weights at 150 d of age (175.2 +/- 2.45 vs 158.4 +/- 3.17 kg). Preweaning growth patterns were different for each season of birth, but there were no differences in weaning weight at 150 d of age (172.9 +/- 2.01 BS-A vs 175.2 +/- 2.45 BS-S). Standardization of weaning weights using a linear approximation could lead to biases, especially when comparing animals from the two calving seasons. The estimate of variances of random parameters should be done within breed and season of birth in order to take into account heteroscedasticity. The variances for BS-A, BS-S, and PI-S were 39.9, 57.6, and 32.2 kg2 for the intercept, respectively, and .0159, .0141, and .0205 kg2 for the linear coefficient. Covariance between the intercept and the linear coefficient (.34 kg2) was only statistically significant in the case of BS-S. The individual variance of weight at 150 d was 424.7 kg2 and 526.7 kg2 for BS-S and PI-S, respectively, almost 65% of the observed variance of weaning weight.  (+info)

Growing-finishing performance and carcass characteristics of pigs fed normal and genetically modified low-phytate corn. (36/1048)

A genetically modified corn hybrid homozygous for the lpa1 allele, containing low phytate (LP), and its nearly isogenic equivalent hybrid (normal) were compared in two experiments with growing-finishing swine. In Exp. 1, 210 barrows (27 kg) were allotted to one of six dietary treatments with two corn hybrids (LP and normal) and three P feeding regimens. There were five replicate pens (seven pigs/pen) per treatment. Treatments consisted of diets that were supplemented with P throughout the growing-finishing period (.2% P and .15% supplemental P during growing and finishing phases, respectively) or only during the growing phase (.2% supplemental P) or that were not supplemented with P throughout the growing-finishing period. Performance at the end of the growing phase was based on a 2 x 2 factorial arrangement of treatments with two corn hybrids and two levels of added P (0 and .2%). This resulted in 10 replicates for the treatments supplemented with .2% P. The finishing phase (73 to 112 kg) was a 2 x 3 factorial arrangement of treatments with the two types of corn and three regimens of added P during the finishing period. Breaking load (BL) and ash of the fourth metacarpal were evaluated from one pig/pen at the end of the growing phase and from all pigs after slaughter. Pigs fed the LP corn diet without added P had greater body weight gain, feed efficiency, BL, and ash content of the fourth metacarpal than pigs fed the normal corn diet without added P. Performance was similar between pigs fed the LP diet without added P and pigs fed LP and normal corn with added P. In Exp. 2, 1,092 gilts (34 kg body weight) were allotted by weight in a commercial facility to one of three treatments: 1) normal corn/soybean meal diet containing .29% and .22% available P during the growing and finishing phases, respectively; 2) LP corn/soybean meal diet with the same available P level as Treatment 1; and 3) same as Treatment 2 for 8 wk, then no inorganic P supplementation during the finishing phase. All pigs were slaughtered at approximately 122 kg. There were no significant differences in growing-finishing performance or BL among treatments. However, pigs fed diets containing LP corn possessed carcasses with less backfat and a higher percentage of lean (P < .01). These results confirm that the P in LP corn is available to the pig and suggest that pigs fed diets containing this genetically modified corn will have more desirable carcasses.  (+info)

Effect of dietary formates on growth performance, carcass traits, sensory quality, intestinal microflora, and stomach alterations in growing-finishing pigs. (37/1048)

Three experiments were conducted to evaluate the effect of adding salts of formic acid to diets for growing-finishing pigs. In Exp. 1, 72 pigs (23.1 kg and 104.5 kg initial and final BW) were used to evaluate the effect of Ca/Na-formate and K-diformate on performance and carcass traits. Treatments were organized in a 2 x 3 factorial arrangement with two feeding regimens (limit and semi-ad libitum feeding) and three diets (control, .85% Ca/Na-formate, and .8% K-diformate). No significant feeding regime x diet interaction was found. The K-diformate diet increased overall ADG of pigs compared with the control and Ca/Na-formate diets, but had no effect on ADFI or gain/feed (G/F) ratio. Neither K-diformate nor Ca/Na-formate had any effect on carcass lean or fat content. In Exp. 2, 10 limit-fed pigs (24.3 kg and 85.1 kg initial and final BW) were used to study the effect of K-diformate on performance and sensory quality of pork. Adding .8% K-diformate to diets increased ADG (P < .13) and G/F (P < .04), but had no effect on sensory quality of the pork or content of formate in liver, kidney, or muscle tissue of pigs. In Exp. 3, 96 limit-fed pigs (27.1 kg and 105 kg initial and final BW) were used to determine the effect of adding K-diformate to diets on performance, carcass traits, and stomach keratinization and(or) lesions. Adding K-diformate (0, .6, or 1.2%) to diets increased ADG and ADFI (linear P < .01). The K-diformate reduced the percentage of carcass fat (linear P < .03) and fat area in the cutlet (linear P < .09) and increased percentage lean in the ham (linear P < .01), flank (linear P < .02), loin (linear P < .09), and neck and shoulder (linear P < .09). The K-diformate had no negative effect on stomach alterations. In Exp. 3, the concentration of coliform bacteria in the gastrointestinal tract was evaluated in eight control and eight 1.2% K-diformate-fed pigs. The K-diformate reduced the number of coliforms in the duodenum (P < .03), jejunum (P < .02), and rectum (P < .10) of pigs. In conclusion, K-diformate improved growth performance and carcass quality of growing-finishing pigs, whereas Ca/Na-formate had no effect. K-diformate had no adverse effect on sensory quality of pork or on stomach alteration scores.  (+info)

Widespread susceptibility among inbred mouse strains to the induction of lupus autoantibodies by pristane. (38/1048)

Unlike other agents associated with drug-induced lupus, the isoprenoid alkane pristane induces autoantibodies pathognomonic of lupus, including anti-Sm, anti-dsDNA, and anti-ribosomal P in BALB/c and SJL/J mice. The susceptibility of other strains of mice to pristane-induced lupus is unknown and is the focus of the present study. Anti-nRNP/Sm, anti-Su, and anti-ribosomal P autoantibodies were produced by most strains of mice surveyed within several months of pristane treatment, although there was marked interstrain variability in their frequencies, levels, and times of onset. In sharp contrast, the production of autoantibodies against the double-stranded RNA binding proteins NF45/NF90/p110 was restricted to B6 and B10.S mice. We conclude that pristane selectively induces lupus-specific autoantibodies in virtually any strain of mouse regardless of its genetic background. However, H-2-linked as well as non-H2 genes influenced the expression of individual autoantibody markers. The widespread susceptibility of pristane-treated mice to lupus autoantibody production and the relatively small effect of MHC are unique features of this chemically induced lupus syndrome, with potential implications for understanding the pathogenesis of autoantibodies in idiopathic human systemic lupus erythematosus.  (+info)

Group size and floor-space allowance can affect weanling-pig performance. (39/1048)

Crossbred weanling piglets (n = 1,920; mean initial BW, 5.3 +/- .7 kg) were used in two 9-wk trials employing a randomized block design in a 2 x 2 factorial arrangement of treatments to determine effects of group size (20 [Small = S] or 100 [Large = L] pigs/pen) and floor-space allowance (calculated requirement [CR] or calculated requirement less 50% of estimated "free space" [CR-50]) on growth performance. Free space was estimated for each group size. From wk 1 through 4 after weaning, S and L groups at CR were allowed a floor space of .17 m2/pig, and at CR-50, S and L groups were allowed .15 m2/pig and .13 m2/pig, respectively. From wk 5 through 9 after weaning, all CR treatment pigs were provided a floor space of .38 m2/pig, and for the CR-50 treatment, S and L pigs were allowed .32 m2/pig and .28 m2/pig, respectively. Piglets had free access to feed and water. Feeder-trough space per pig was the same for both group sizes. Feed-intake data were collected for only wk 1 through 4. Group size by floor-space allowance interactions (P < .05) were found for gain/feed ratio (G/F) for wk 1 and wk 2 through 4, but not for wk 1 through 4. Piglets in L groups were lighter (P < .001) at the end of wk 1, 4, and 9 by 2, 4, and 5%, respectively, and had lower ADG (6%; P < .001) throughout the trial than S piglets. During wk 1 through 4, feed intake was lower (7%, P < .001) in L piglets than in S piglets, but G/F was similar (P > .05). Piglets in CR groups had greater ADG (5%; P < .01) throughout the trial, with a greater G/F (P < .05) for wk 1 through 4, and were heavier (P < .01) than those in CR-50 groups at the end of wk 4 (3%) and 9 (4%). Pigs in L groups had a greater within-pen coefficient of variation in BW at the end of wk 9 than pigs in S groups. Large groups and reduced floor-space allowance reduced piglet growth performance in the nursery.  (+info)

Concentrated swine feeding operations and public health: a review of occupational and community health effects. (40/1048)

Recent industry changes in swine-management practices have resulted in a growing controversy surrounding the environmental and public health effects of modern swine production. The numerous wastes produced by intensive swine production not only pose a significant challenge to effective environmental management but also are associated with decreased air quality in confinement houses, potentially transferable antimicrobial resistance patterns, and several infectious agents that can be pathogenic to humans. Published studies have documented a variety of contaminants, microbial agents, and health effects in those occupationally exposed to swine, and these have provided the groundwork for an increasing body of research to evaluate possible community health effects. Nonetheless, several factors limit our ability to define and quantify the potential role of intensive swine-rearing facilities in occupational and community health. Our incomplete understanding and ability to detect specific exposures; the complicated nature of disease etiology; pathogenesis; and surveillance; and the inherent difficulties associated with study design all contribute to the inadequate level of knowledge that currently prevails. However; an evaluation of the published literature; and a recognition of the elements that may be compromising these studies; provides the foundation from which future studies may develop.  (+info)