High sequence turnover in the regulatory regions of the developmental gene hunchback in insects. (1/236)

Extensive sequence analysis of the developmental gene hunchback and its 5' and 3' regulatory regions in Drosophila melanogaster, Drosophila virilis, Musca domestica, and Tribolium castaneum, using a variety of computer algorithms, reveals regions of high sequence simplicity probably generated by slippage-like mechanisms of turnover. No regions are entirely refractory to the action of slippage, although the density and composition of simple sequence motifs varies from region to region. Interestingly, the 5' and 3' flanking regions share short repetitive motifs despite their separation by the gene itself, and the motifs are different in composition from those in the exons and introns. Furthermore, there are high levels of conservation of motifs in equivalent orthologous regions. Detailed sequence analysis of the P2 promoter and DNA footprinting assays reveal that the number, orientation, sequence, spacing, and protein-binding affinities of the BICOID-binding sites varies between species and that the 'P2' promoter, the nanos response element in the 3' untranslated region, and several conserved boxes of sequence in the gene (e.g., the two zinc-finger regions) are surrounded by cryptically-simple-sequence DNA. We argue that high sequence turnover and genetic redundancy permit both the general maintenance of promoter functions through the establishment of coevolutionary (compensatory) changes in cis- and trans-acting genetic elements and, at the same time, the possibility of subtle changes in the regulation of hunchback in the different species.  (+info)

Mechanism of cytochrome P450 reductase from the house fly: evidence for an FMN semiquinone as electron donor. (2/236)

The interaction of recombinant house fly (Musca domestica) P450 reductase with NADPH and the role of the FMN semiquinone in reducing cytochrome c have been investigated. House fly P450 reductase can rapidly oxidize only one molecule of NADPH, whereas the rate of oxidation of a second molecule of NADPH is too slow to account for the observed rates of catalysis. This demonstrates that house fly P450 reductase does not require a priming reaction with NADPH for catalysis. Kinetics of cytochrome c reduction and EPR spectroscopy revealed that the enzyme forms two types of neutral FMN semiquinone. One serves as the catalytic intermediate of cytochrome c reduction, and another one is an 'airstable' semiquinone, which reduces cytochrome c 3000 times more slowly. The results show that the reduction state of the house fly P450 reductase during catalysis cycles in a 0-2-1-0 sequence.  (+info)

House flies (Musca domestica) as transport hosts of Cryptosporidium parvum. (3/236)

Refuse and promiscuous-landing synanthropic filth flies, such as house flies (Musca domestica), are recognized as transport hosts for a variety of protozoan and metazoan parasites in addition to viral and bacterial pathogens of public health importance. Exposure of adult M. domestica to 20 ml of bovine diarrheal feces containing Cryptosporidium parvum oocysts (2.0 x 10(5) oocysts/ml) resulted in intense deposition of the oocysts through fly feces on the surfaces visited by the flies (mean = 108 oocysts/cm2). Cryptosporidium parvum oocysts were detected by immunofluorescent antibodies on the exoskeleton of adult flies and in their digestive tracts. An average of 267, 131, 32, 19, and 14 oocysts per adult fly were eluted from its exoskeleton on days 3, 5, 7, 9, and 11 after they emerged, respectively. Approximately 320 C. parvum oocysts per pupa were eluted from the external surface of the pupae derived from maggots that breed in a substrate contaminated with the bovine feces; the oocysts were numerous on maggots (approximately 150 oocysts/maggot). Adult and larval stages of house flies breeding or having access to C. parvum-contaminated substrate will mechanically carry the oocysts in their digestive tracts and on their external surfaces.  (+info)

Preparation of homogenous NADPH cytochrome c (P-450) reductase from house flies using affinity chromatography techniques. (4/236)

NADPH-cytochrome c (P-450) reductase (EC 1.6.2.4) was purified to apparent homogeneity from microsomes of house flies, Musca domestica L. The purification procedure involves column chromatography on three different resins. The key step in the purification scheme is the chromatography of the enzyme mixture on an affinity column of agarose-hexane-nicotinamide adenine dinucleotide phosphate. The enzyme has an estimated molecular weight of 83,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and contains 1 mol each of FAD and FMN per mol of enzyme. The enzyme exhibited a Bi Bi ping-pong kinetic mechanism with NADPH and cytochrome c. The Vmax and Km for cytochrome c were 42.3 mumol min-1 mg-1 and 12.7 muM, respectively. Turnover numbers based on micromoles of enzyme were 2,600 min-1. NADP+ and 2'-AMP both inhibited the reductases with apparent Ki values of 6.9 and 187 muM, respectively. These preparations of NADPH-cytochrome c reductase were found to reduce purified house fly cytochrome P-450 in the presence of NADPH.  (+info)

Houseflies: not simple mechanical vectors of enterohemorrhagic Escherichia coli O157:H7. (5/236)

An epidemic of enterohemorrhagic colitis caused by Escherichia coli O157:H7 (EHEC-O157) occurred in a nursery school in a rural area of Japan in September 1996. The EHEC-O157 were isolated both from patients and houseflies collected at the school. The flies were suspected to be mechanical vectors of the pathogen. Feeding experiments of EHEC-O157 to houseflies showed that the ingested bacteria were harbored in the intestine of flies and continued to be excreted at least for 3 days after feeding. Scanning electron microscopy showed that a large number of EHEC-O157 adhered to the surface of the housefly mouthparts and actively proliferated in the minute spaces of the labellum. Food masses containing EHEC-O157 in the fly intestine were completely surrounded by a peritrophic membrane during digestion and discharged rapidly. The persistence of bacteria in the intestine and feces is mainly a result of proliferation in the mouthparts and accumulation in the crop. Our results strongly suggest that houseflies are not simple mechanical vectors of EHEC. The epidemiologic potential of houseflies to disseminate EHEC-O157 may be greater than initially suspected.  (+info)

Structure, function and evolution of sex-determining systems in Dipteran insects. (6/236)

Nature has evolved an astonishing variety of genetic and epigenetic sex-determining systems which all achieve the same result, the generation of two sexes. Genetic and molecular analyses, mainly performed during the last 20 years, have gradually revealed the mechanisms that govern sexual differentiation in a few model organisms. In this review, we will introduce the sex-determining system of Drosophila and compare the fruitfly to the housefly Musca domestica and other Dipteran insects. Despite the ostensible variety, all these insects use the same basic strategy: a primary genetic signal that is different in males and females, a key gene that responds to the primary signal, and a double-switch gene that eventually selects between two alternative sexual programmes. These parallels, however, do not extend to the molecular level. Except for the double-switch gene doublesex at the end of the cascade, no functional homologies were found between more distantly related insects. In particular, Sex-lethal, the key gene that controls sexual differentiation in Drosophila, does not have a sex-determining function in any other genus studied so far. These results show that sex-determining cascades, in comparison to other regulatory pathways, evolve much more rapidly.  (+info)

The clock gene period of the housefly, Musca domestica, rescues behavioral rhythmicity in Drosophila melanogaster. Evidence for intermolecular coevolution? (7/236)

In Drosophila, the clock gene period (per), is an integral component of the circadian clock and acts via a negative autoregulatory feedback loop. Comparative analyses of per genes in insects and mammals have revealed that they may function in similar ways. However in the giant silkmoth, Antheraea pernyi, per expression and that of the partner gene, tim, is not consistent with the negative feedback role. As an initial step in developing an alternative dipteran model to Drosophila, we have identified the per orthologue in the housefly, Musca domestica. The Musca per sequence highlights a pattern of conservation and divergence similar to other insect per genes. The PAS dimerization domain shows an unexpected phylogenetic relationship in comparison with the corresponding region of other Drosophila species, and this appears to correlate with a functional assay of the Musca per transgene in Drosophila melanogaster per-mutant hosts. A simple hypothesis based on the coevolution of the PERIOD and TIMELESS proteins with respect to the PER PAS domain can explain the behavioral data gathered from transformants.  (+info)

Modification of synaptic transmission and sodium channel inactivation by the insect-selective scorpion toxin LqhalphaIT. (8/236)

The peptide LqhalphaIT is an alpha-scorpion toxin that shows significant selectivity for insect sodium channels over mammalian channels. We examined the symptoms of LqhalphaIT-induced paralysis and its neurophysiological correlates in the house fly (Musca domestica). Injection of LqhalphaIT into fly larvae produced hyperactivity characterized by continuous, irregular muscle twitching throughout the body. These symptoms were correlated with elevated excitability in motor units caused by two physiological effects of the toxin: 1) increased transmitter release and 2) repetitive action potentials in motor nerves. Increased transmitter release was evident as augmentation of neurally evoked synaptic current, and this was correlated with an increased duration of action potential-associated current (APAC) in loose patch recordings from nerve terminals. Repetitive APACs were observed to invade nerve endings. The toxin produced marked inhibition of sodium current inactivation in fly central neurons, which can account for increased duration of the APAC and elevated neurotransmitter release at the neuromuscular junction. Steady-state inactivation was shifted significantly to more positive potentials, whereas voltage-dependent activation of the channels was not affected. The shift in steady-state inactivation provides a mechanism for inducing repetitive activity in motoneurons. The effects of LqhalphaIT on sodium channel inactivation in motor nerve endings can account both for increased transmitter release and repetitive activity leading to hyperactivity in affected insects.  (+info)