Incremental costs of enrolling cancer patients in clinical trials: a population-based study. (1/29)

BACKGROUND: Payment for care provided as part of clinical research has become less predictable as a result of managed care. Because little is known at present about how entry into cancer trials affects the cost of care for cancer patients, we conducted a matched case-control comparison of the incremental medical costs attributable to participation in cancer treatment trials. METHODS: Case patients were residents of Olmsted County, MN, who entered phase II or phase III cancer treatment trials at the Mayo Clinic from 1988 through 1994. Control patients were patients who did not enter trials but who were eligible on the basis of tumor registry matching and medical record review. Sixty-one matched pairs were followed for up to 5 years after the date of trial entry for case patients or from an equivalent date for control patients. Hospital, physician, and ancillary service costs were estimated from a population-based cost database developed at the Mayo Clinic. RESULTS: Trial enrollees incurred modestly (no more than 10%) higher costs over various follow-up periods. The mean cumulative 5-year cost in 1995 inflation-adjusted U.S. dollars among trial enrollees after adjustment for censoring was $46424 compared with $44 133 for control patients. After 1 year, trial enrollee costs were $24645 compared with $23 964 for control patients. CONCLUSIONS: This study suggests that cancer chemotherapy trials may not imply budget-breaking costs. Cancer itself is a high-cost illness. Clinical protocols may add relatively little to that cost.  (+info)

Electronic imaging and clinical implementation: work group approach at Mayo Clinic, Rochester. (2/29)

Electronic imaging clinical implementation strategies and principles need to be developed as we move toward replacement of film-based radiology practices. During an 8-month period (1998 to 1999), an Electronic Imaging Clinical Implementation Work Group (EICIWG) was formed from sections of our department: Informatics Lab, Finance Committee, Management Section, Regional Practice Group, as well as several organ and image modality sections of the Department of Diagnostic Radiology. This group was formed to study and implement policies and strategies regarding implementation of electronic imaging into our practice. The following clinical practice issues were identified as key focus areas: (1) optimal electronic worklist organization; (2) how and when to link images with reports; (3) how to redistribute technical and professional relative value units (RVU); (4) how to facilitate future practice changes within our department regarding physical location and work redistribution; and (5) how to integrate off-campus imaging into on-campus workflow. The EICIWG divided their efforts into two phases. Phase I consisted of Fact finding and review of current practice patterns and current economic models, as well as radiology consulting needs. Phase II involved the development of recommendations, policies, and strategies for reengineering the radiology department to maintain current practice goals and use electronic imaging to improve practice patterns. The EICIWG concluded that electronic images should only be released with a formal report, except in emergent situations. Electronic worklists should support and maintain the physical presence of radiologists in critical areas and direct imaging to targeted subspecialists when possible. Case tools should be developed and used in radiology and hospital information systems (RIS/HIS) to monitor a number of parameters, including professional and technical RVU data. As communication standards improve, proper staffing models must be developed to facilitate electronic on-campus and off-campus consultation.  (+info)

Radiologist-patient interactions: implications for picture archiving and communications systems and teleradiology. (3/29)

We analyzed radiologist-patient interactions and found that radiologic examinations can be classified into three categories: those involving direct interaction of the radiologist with each patient, those involving interaction of the radiologist with some of the patients, and those that do not involve interaction between the radiologist and the patient. We then analyzed the staff assignments of a large academic radiology practice and a moderate-sized radiology department. Both departments include a full range of inpatient and outpatient procedures. We concluded that about 50% of the radiologists in these practices could interpret examinations at a location independent of the site where the examination was performed. This type of analysis can be helpful in planning for the reengineering of radiology processes following implementation of picture archiving and communications systems (PACS) and teleradiology.  (+info)

Impact of electronic imaging on clinician behavior in the urgent care setting. (4/29)

Although it is intuitively valuable that more expedient delivery of radiographic images and reports to clinicians would improve patient care, it is important to document these outcomes to validate further advances in these areas. We evaluated the care of 215 patients seen at a walk-in clinic to determine what benefit digital imaging is to the patient. Cohorts consisted of all patients for whom specified radiology examinations were ordered during a 7-day period. The first cohort was recruited when analog films were used. The second cohort received examinations performed with computed radiography (CR) acquisition and computer display, which had been in use for 2 years. Patients were categorized as to the type of study they received, as well as whether a staff radiologist was immediately available to read the study. Clinical behavior was characterized by outcome measures of time to final diagnosis, time to final treatment, and need for follow-up. Our analysis demonstrated a reduction in time to final diagnosis that was better appreciated during the times when a staff radiologist was not immediately available. It also suggested that greater time reductions were seen for patients who received extremity examinations than those who received chest, sinus, or rib films. These data suggest that digital imaging is a useful tool to improve clinical outcome of patients seen in the acute care setting.  (+info)

Electronic imaging impact on image and report turnaround times. (5/29)

We prospectively compared image and report delivery times in our Urgent Care Center (UCC) during a film-based practice (1995) and after complete implementation of an electronic imaging practice in 1997. Before switching to a totally electronic and filmless practice, multiple time periods were consistently measured during a 1-week period in May 1995 and then again in a similar week in May 1997 after implementation of electronic imaging. All practice patterns were the same except for a film-based practice in 1995 versus a filmless practice in 1997. The following times were measured: (1) waiting room time, (2) technologist's time of examination, (3) time to quality control, (4) radiology interpretation times, (5) radiology image and report delivery time, (6) total radiology turn-around time, (7) time to room the patient back in the UCC, and (8) time until the ordering physician views the film. Waiting room time was longer in 1997 (average time, 26:47) versus 1995 (average time, 15:54). The technologist's examination completion time was approximately the same (1995 average time, 06:12; 1997 average time, 05:41). There was also a slight increase in the time of the technologist's electronic verification or quality control in 1997 (average time, 7:17) versus the film-based practice in 1995 (average time, 2:35). However, radiology interpretation times dramatically improved (average time, 49:38 in 1995 versus average time 13:50 in 1997). There was also a decrease in image delivery times to the clinicians in 1997 (median, 53 minutes) versus the film based practice of 1995 (1 hour and 40 minutes). Reports were available with the images immediately upon completion by the radiologist in 1997, compared with a median time of 27 minutes in 1995. Importantly, patients were roomed back into the UCC examination rooms faster after the radiologic procedure in 1997 (average time, 13:36) than they were in 1995 (29:38). Finally, the ordering physicians viewed the diagnostic images and reports in dramatically less time in 1997 (median, 26 minutes) versus 1995 (median, 1 hour and 5 minutes). In conclusion, a filmless electronic imaging practice within our UCC greatly improved radiology image and report delivery times, as well as improved clinical efficiency.  (+info)

Performance and function of a high-speed multiple star topology image management system at Mayo Clinic Scottsdale. (6/29)

Mayo Clinic Scottsdale (MCS) is a busy outpatient facility (150,000 examinations per year) connected via asynchronous transfer mode (ATM; OC-3 155 MB/s) to a new Mayo Clinic Hospital (178 beds) located more than 12 miles distant. A primary care facility staffed by radiology lies roughly halfway between the hospital and clinic connected to both. Installed at each of the three locations is a high-speed star topology image network providing direct fiber connection (160 MB/s) from the local image storage unit (ISU) to the local radiology and clinical workstations. The clinic has 22 workstations in its star, the hospital has 13, and the primary care practice has two. In response to Mayo's request for a seamless service among the three locations, the vendor (GE Medical Systems, Milwaukee, WI) provided enhanced connectivity capability in a two-step process. First, a transfer gateway (TGW) was installed, tested, and implemented to provide the needed communication of the examinations generated at the three sites. Any examinations generated at either the hospital or the primary care facility (specified as the remote stars) automatically transfer their images to the ISU at the clinic. Permanent storage (Kodak optical jukebox, Rochester, NY) is only connected to the hub (Clinic) star. Thus, the hub ISU is provided with a copy of all examinations, while the two remote ISUs maintain local exams. Prefetching from the archive is intelligently accomplished during the off hours only to the hub star, thus providing the remote stars with network dependent access to comparison images. Image transfer is possible via remote log-on. The second step was the installation of an image transfer server (ITS) to replace the slower Digital Imaging and Communications in Medicine (DICOM)-based TGW, and a central higher performance database to replace the multiple database environment. This topology provides an enterprise view of the images at the three locations, while maintaining the high-speed performance of the local star connection to what is now called the short-term storage (STS). Performance was measured and 25 chest examinations (17 MB each) transferred in just over 4 minutes. Integration of the radiology information management system (RIMS) was modified to provide location-specific report and examination interfaces, thereby allowing local filtering of the worklist to remote and near real-time consultation, and remote examination monitoring of modalities are addressed with this technologic approach. The installation of the single database ITS environment has occurred for testing prior to implementation.  (+info)

Remote telemedical interpretation of neonatal echocardiograms: impact on clinical management in a primary care setting. (7/29)

OBJECTIVE: The purpose of this study was to evaluate the utility of telemedical echocardiographically assisted neonatal cardiovascular evaluation in a primary care setting. BACKGROUND: Neonates with congenital heart disease are frequently born far from pediatric subspecialty centers and can be clinically unstable at presentation. Recent advances in telecommunication technology have made it possible to transmit echocardiographic images over long distances. This technology may be beneficial to newborns with heart defects who are born in primary care centers. METHODS: A retrospective review of all telemedical echocardiograms obtained from neonates (aged 1 day to 30 days) was performed. A telemedical link was created using a T-1 transmission line and a standard voice telephone line between the Mayo Clinic, Rochester, Minnesota (pediatric cardiology site), and the Altru Clinic, Grand Forks, North Dakota (primary care site), which is a general pediatric practice 400 miles from Rochester. Neonates with possible cardiac disorders were identified by the general pediatricians, who then requested telemedical echocardiography. RESULTS: The 133 neonates had 161 T-1 echocardiograms. Median patient age was two days (range, one day to 29 days). One hundred thirty-two of 133 initial echocardiograms (99%) were obtained because of urgent indications. Transmitted images provided adequate diagnostic information in all patients. Seventy-nine neonates (59%) had a change in medical management or required cardiology follow-up. An immediate change in management occurred in 32 patients (24%), including seven in whom emergency transfer was either arranged or avoided. CONCLUSIONS: Telemedical echocardiography provides accurate diagnostic data in neonates. Rapid telediagnosis facilitates appropriate care of sick neonates with possible congenital heart disease in the primary care setting. Unnecessary long-distance transfers can be avoided with this technology.  (+info)

Requirements for an enterprise digital image archive. (8/29)

This report describes several image archival problems facing the authors' department and the results of their attempt to define the requirements for an enterprise digital image archive. The problems identified include the costs of supporting multiple distinct archives, the increased complexity of supporting multiple archive interfaces, the differences in data handling policies and resulting variations in data integrity, and variability in support for nonimage data. The authors also describe the data collected including image volumes and trends and imaging device trends. Finally, the resulting specification for an enterprise digital image archive, including storage and retrieval performance and interface requirements are presented.  (+info)