Hemocyanin of the horseshoe crab, Limulus polyphemus. Structural differentiation of the isolated components. (1/418)

The high molecular weight hemocyanin found in the hemolymph of the horseshoe crab, Limulus polyphemus, is composed of at least eight different kinds of subunits. Ion exchange chromatography at high pH in the presence of EDTA yields five major zones, hemocyanins I to V, three of which are electrophoretically heterogeneous. The subunits have similar molecular weights, 65,000 to 70,000, and their amino acid compositions are remarkably similar to each other and to other arthropod and molluscan hemocyanins. Digestion of the native subunits of Limulus hemocyanin by formic acid or trypsin shows considerable structural diversity which is supported by cyanogen bromide cleavage patterns and by peptide mapping of the tryptic peptides prepared from denatured hemocyanin subunits. The structural differentiation of the subunits is accompanied by functional differentiation, as shown in previous investigations of their O2 and CO affinities (Sullivan, B., Bonaventura, J., and Bonaventura, C. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 2558-2562; Bonaventura, C., Bonaventura, J., Sullivan, B., and Bourne, S. (1975) Biochemistry 13, 4784-4789). The subunit diversity of Limulus hemocyanin suggests that other electrophoretically heterogeneous hemocyanins may be composed of structurally distinct subunits.  (+info)

Regulation of Limulus skeletal muscle contraction. (2/418)

Skeletal muscle contraction of Limulus polyphemus, the horseshoe crab, seemed to be regulated in a dual manner, namely Ca2+ binding to the troponin complex as well phosphorylation of the myosin light chains (MLC) by a Ca2+/calmodulin-dependent myosin light chain kinase. We investigated muscle contraction in Limulus skinned fibers in the presence of Ca2+ and of Ca2+/calmodulin to find out which of the two mechanisms prevails in Limulus skeletal muscle contraction. Although skinned fibers revealed high basal MLC mono- and biphosphorylation levels (0.48 mol phosphate/mol 31 kDa MLC; 0.52 mol phosphate/mol 21 kDa MLC), the muscle fibers were fully relaxed at pCa 8. Upon C2+ or Ca2+/calmodulin activation, the fibers developed force (357+/-78.7 mN/mm2; 338+/-69.7 mN/mm2, respectively) while the MLC phosphorylation remained essentially unchanged. We conclude that Ca2+ activation is the dominant regulatory mechanism in Limulus skeletal muscle contraction.  (+info)

Specific and sensitive assay for alkaline and neutral ceramidases involving C12-NBD-ceramide. (3/418)

A fluorescent analogue of ceramide, C12-NBD-ceramide, was found to be hydrolyzed much faster than 14C-labeled ceramide by alkaline ceramidase from Pseudomonas aeruginosa and neutral ceramidase from mouse liver, while this substrate was relatively resistant to acid ceramidase from plasma of the horseshoe crab. The radioactive substrate was used more preferentially by the acid ceramidase. It should be noted that C6-NBD-ceramide, which is usually used for ceramidase assays, was hardly hydrolyzed by any of the enzymes examined, compared to C12-NBD-ceramide. For the alkaline and neutral enzymes, the Vmax and k (Vmax/Km) with C12-NBD-ceramide were much higher than those with 14C-ceramide. In contrast, for the acid enzyme these parameters with C12-NBD-ceramide were less than half those with the radioisotope-labeled substrate. It is noteworthy that the labeling of ceramide with NBD did not itself reduce the Km of the alkaline enzyme, but did that of the neutral enzyme. It was also found that C12-NBD-ceramide was preferentially hydrolyzed by the alkaline and neutral enzymes, but not the acid one, in several mammalian cell lines. This study clearly shows that the attachment of NBD, but not dansyl, increases the susceptibility of ceramide to alkaline and neutral enzyme, and decreases that to acid enzymes. Thus the use of this substrate provides a specific and sensitive assay for alkaline and neutral ceramidases.  (+info)

Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. (4/418)

Tachylectin-2, isolated from large granules of the hemocytes of the Japanese horseshoe crab (Tachypleus tridentatus), is a 236 amino acid protein belonging to the lectins. It binds specifically to N-acetylglucosamine and N-acetylgalactosamine and is a part of the innate immunity host defense system of the horseshoe crab. The X-ray structure of tachylectin-2 was solved at 2.0 A resolution by the multiple isomorphous replacement method and this molecular model was employed to solve the X-ray structure of the complex with N-acetylglucosamine. Tachylectin-2 is the first protein displaying a five-bladed beta-propeller structure. Five four-stranded antiparallel beta-sheets of W-like topology are arranged around a central water-filled tunnel, with the water molecules arranged as a pentagonal dodecahedron. Tachylectin-2 exhibits five virtually identical binding sites, one in each beta-sheet. The binding sites are located between adjacent beta-sheets and are made by a large loop between the outermost strands of the beta-sheets and the connecting segment from the previous beta-sheet. The high number of five binding sites within the single polypeptide chain strongly suggests the recognition of carbohydrate surface structures of pathogens with a fairly high ligand density. Thus, tachylectin-2 employs strict specificity for certain N-acetyl sugars as well as the surface ligand density for self/non-self recognition.  (+info)

Actin filament-membrane attachment: are membrane particles involved? (5/418)

The association of actin filaments with membranes is an important feature in the motility of nonmuscle cells. We investigated the role of membrane particles in the attachment of actin filaments to membranes in those systems in which the attachment site can be identified. Freeze fractures through the end-on attachment site of the acrosomal filament bundles in Mytilus (mussel) and Limulus (horseshoe crab) sperm and the attachment site of the microvillar filament bundles in the brush border of intestinal epithelial cells were examined. There are no particles on the P face of the membrane at these sites in the sperm systems and generally none at these sites in microvilli. In microvilli, the actin filaments are also attached along their lengths to the membrane by bridges. When the isolated brush border is incubated in high concentrations of Mg++ (15 mM), the actin filaments form paracrystals and, as a result, the bridges are in register (330 A period). Under these conditions, alignment of the particles on the P face of the membrane into circumferential bands also occurs. However, these bands are generally separated by 800-900 A, indicating that all the bridges cannot be directly attached to membrane particles. Thus membrane particles are not directly involved in the attachment of actin filaments to membranes.  (+info)

Scanning electron-microscopical and other observations of sperm fertilization reactions in Limulus polyphemus L. (Merostomata: Xiphosura). (6/418)

Sperm fertilization reactions of Limulus polyphemus were examined by scanning electron and/or light microscopy. The following were considered: sperm motility, attachment of sperm to egg, acrosome reaction, and penetration of the acrosomal filament. The spermatozoa after semination are non-motile and become active only in close proximity to a defined region surrounding the egg. Egg materials diffusing into this region induce sperm motility and stimulate large numbers of spermatozoa to move towards the egg surface. Each sperm initially attaches by the apical tip and undergoes the acrosome reaction which causes a more permanent secondary attachment by the adhesion of acrosomal contents to the egg surface. The acrosome reaction also initiates the penetration of the acrosomal filament through the egg envelope, an event occurring in 70-80% of the attached spermatozoa (about 10(6). Shortly after this penetration, a secondary reaction occurs which involves a spiralling of the flagellum and an incorporation into the sperm body of the flagellar fibrous components, which then become closely apposed to the sperm nucleus. These sperm fertilization reactions were performed or initiated with 0-34 M CaCl2 in whole eggs, egg sections, excised egg envelopes and/or the outer basement lamina of the egg envelope. The Limulus fertilization system is very valuable since sperm reactions can be examined biochemically, which may lead to a better understanding of the chemical mechanisms involved in sperm-egg interactions in all animal species.  (+info)

The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus: fivefold tandem repetition of a coding region. (7/418)

We sequenced across all of the gene boundaries in the mitochondrial genome of the cattle tick, Boophilus microplus, to determine the arrangement of its genes. The mtDNA of B. microplus has a coding region, composed of tRNA(Glu) and 60 bp of the 3' end of ND1, that is repeated five times. Boophilus microplus is the first coelomate animal known to have more than two copies of a coding sequence. The mitochondrial genome of B. microplus has other unusual features, including (1) reduced T arms in tRNAs, (2) an AT bias in codon use, (3) two control regions that have evolved in concert, (4) three gene rearrangements, and (5) a stem-loop between tRNA(Gln) and tRNA(Phe). The short T arms and small control regions (CRs) of B. microplus and other ticks suggest strong selection for small genomes. Imprecise termination of replication beyond its origin, which can account for the evolution of tandem repeats of coding regions in other mitochondrial genomes, cannot explain the evolution of the fivefold repeated sequence in the mitochondrial genome of B. microplus. Instead, slipped-strand mispairing or recombination are the most plausible explanations for the evolution of these tandem repeats.  (+info)

Phenotypic variation in Actinobacillus actinomycetemcomitans during laboratory growth: implications for virulence. (8/418)

This study examined alteration of specific virulence traits associated with phenotypic changes seen when a low-passage disease-associated and well maintained parent strain of Actinobacillus actinomycetemcomitans was compared to a laboratory-grown spontaneous variant/mutant. Clinical isolates of A. actinomycetemcomitans recovered from periodontitis patients typically grow as rough, adherent colonies on primary culture but undergo transformation to smooth, non-adherent colonies following repeated passage in vitro. The relationship of these phenotypic changes to the virulence of the organism or to the processes that underlie this transformation are not understood. A fresh clinical isolate, designated strain CU1000, was obtained from the first molar site of a patient with classical signs of localized juvenile periodontitis and used as the parent strain to study virulence-related phenotypes. Following several passages of CU1000 on selective agar, a spontaneous variant that demonstrated smooth, opaque, non-adherent colonies was isolated and designated strain CU1060. This study compared the properties of these two strains with respect to colony morphology, autoaggregation, surface appendages, adherence to saliva-coated hydroxyapatite (SHA), LPS chemotype and activity, induction of fibroblast proteinase activity and antigenic properties. CU1000 demonstrated rough, raised, star-positive colonies which upon electron microscopic examination revealed the presence of large, flexible, bundled fibrils. In addition, CU1000 showed adherence to SHA, several unique protein antigens and elevated endotoxin and fibroblast proteinase activity. CU1060, on the other hand, showed minimal adherence to SHA and fewer reactive proteins compared to the fresh clinical isolates. This strain formed smooth, opaque colonies on agar, showed minimal fibril formation and limited endotoxin and fibroblast-proteinase-inducing activity. These findings demonstrate that clinical isolates of A. actinomycetemcomitans undergo significant virulence-reducing phenotypic alterations during in vitro passage and support the need to study this organism in its clinical form.  (+info)