Embryological study of a T/t locus mutation (tw73) affecting trophectoderm development. (9/7123)

Mouse embryos homozygous for the recessive lethal mutation tw73 show specific defects in trophectoderm shortly after implantation. The trophectoderm and ectoplacental cone fail to form the usual close association with the uterine decidua, and proliferation is markedly reduced. The embryo proper ceases to develop beyond the two-layered stage and degenerates and dies within 5 days of implantation.  (+info)

The effects of a t-allele (tAE5) in the mouse on the lymphoid system and reproduction. (10/7123)

Mice homozygous for tAE5, a recessive allele at the complex T-locus, are characterized by their unique short-tailed phenotype as well as by runting and low fertility. Histological and histochemical studies of the lymphoid and reproductive systems disclosed structural changes in the mutant spleen resembling those found in autoimmune conditions. Involution of the mutant thymus was greatly accelerated compared to normal. Necrotic changes occurred during spermiogenesis whereas ovarian structure was normal in mutants. The possible mechanisms of the mutant effects are discussed in the framework of other similar syndromes and the mode of action of alleles at the complex T-locus.  (+info)

Amelioration of TCDD-induced teratogenesis in aryl hydrocarbon receptor (AhR)-null mice. (11/7123)

The aryl hydrocarbon receptor (AhR) mediates many of the biological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and transcriptional activation of genes encoding a number of xenobiotic metabolizing enzymes. Prenatal exposure of mice to TCDD causes severe alterations in embryo and fetal development, including hydronephrosis and cleft palate. However, the mechanisms underlying these effects are unclear. In this work, the teratogenicity of TCDD in AhR-null mice was evaluated to determine if this effect is mediated by the AhR. Homozygous wild-type (+/+) or AhR-null (-/-) female mice were mated with males of the same genotype overnight. On gestation day (GD)-10, mice were intubated orally with either corn oil (vehicle control) or 25 micrograms/kg TCDD. Fetuses were examined on GD18 for visceral and skeletal alterations. For non-TCDD-exposed litters, all developmental endpoints were comparable between genotypes, with the exception of a lower incidence of large interfrontal bones in (-/-) mice. For TCDD-exposed litters, (+/+) fetuses had a significantly greater incidence of cleft palate, hydronephrosis, small kidneys, tortuous ureters and greater dilation of the renal pelves and ureters compared to (-/-) fetuses. Interestingly, an increased resorption rate was observed in (-/-) fetuses exposed to TCDD. Results from this work demonstrate that fetal development per se is generally unaffected by the absence of the AhR or that other genes may have compensated for the loss of the AhR. More importantly, these data indicate that the AhR mediates TCDD-induced teratogenicity. Further, since a higher percentage of resorptions was observed in (-/-) litters from TCDD-treated dams, it is possible that AhR-independent mechanisms contribute to TCDD-induced developmental toxicity.  (+info)

Homozygosity mapping to the USH2A locus in two isolated populations. (12/7123)

Usher syndrome is a group of autosomal recessive disorders characterised by progressive visual loss from retinitis pigmentosa and moderate to severe sensorineural hearing loss. Usher syndrome is estimated to account for 6-10% of all congenital sensorineural hearing loss. A gene locus in Usher type II (USH2) families has been assigned to a small region on chromosome 1q41 called the UHS2A locus. We have investigated two families with Usher syndrome from different isolated populations. One family is a Norwegian Saami family and the second family is from the Cayman Islands. They both come from relatively isolated populations and are inbred families suitable for linkage analysis. A lod score of 3.09 and 7.65 at zero recombination was reached respectively in the two families with two point linkage analysis to the USH2A locus on 1q41. Additional homozygosity mapping of the affected subjects concluded with a candidate region of 6.1 Mb. This region spans the previously published candidate region in USH2A. Our study emphasises that the mapped gene for USH2 is also involved in patients from other populations and will have implications for future mutation analysis once the USH2A gene is cloned.  (+info)

Acetylcholine-induced relaxation in blood vessels from endothelial nitric oxide synthase knockout mice. (13/7123)

1. Isometric tension was recorded in isolated rings of aorta, carotid, coronary and mesenteric arteries taken from endothelial nitric oxide synthase knockout mice (eNOS(-/-) mice) and the corresponding wild-type strain (eNOS(+/+) mice). The membrane potential of smooth muscle cells was measured in coronary arteries with intracellular microelectrodes. 2. In the isolated aorta, carotid and coronary arteries from the eNOS(+/+) mice, acetylcholine induced an endothelium-dependent relaxation which was inhibited by N(omega)-L-nitro-arginine. In contrast, in the mesenteric arteries, the inhibition of the cholinergic relaxation required the combination of N(omega)-L-nitro-arginine and indomethacin. 3. The isolated aorta, carotid and coronary arteries from the eNOS(-/-) mice did not relax in response to acetylcholine. However, acetylcholine produced an indomethacin-sensitive relaxation in the mesenteric artery from eNOS(-/-) mice. 4. The resting membrane potential of smooth muscle cells from isolated coronary arteries was significantly less negative in the eNOS(-/-) mice (-64.8 +/- 1.8 mV, n = 20 and -58.4 +/- 1.9 mV, n = 17, for eNOS(+/+) and eNOS(-/-) mice, respectively). In both strains, acetylcholine, bradykinin and substance P did not induce endothelium-dependent hyperpolarizations whereas cromakalim consistently produced hyperpolarizations (- 7.9 +/- 1.1 mV, n = 8 and -13.8 +/- 2.6 mV, n = 4, for eNOS(+/+) and eNOS(-/-) mice, respectively). 5. These findings demonstrate that in the blood vessels studied: (1) in the eNOS(+/+) mice, the endothelium-dependent relaxations to acetylcholine involve either NO or the combination of NO plus a product of cyclo-oxygenase but not EDHF; (2) in the eNOS(-/-) mice, NO-dependent responses and EDHF-like responses were not observed. In the mesenteric arteries acetylcholine releases a cyclo-oxygenase derivative.  (+info)

Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. (14/7123)

Primary carnitine deficiency is an autosomal recessive disorder of fatty acid oxidation caused by defective carnitine transport. This disease presents early in life with hypoketotic hypoglycemia or later in life with skeletal myopathy or cardiomyopathy. The gene for this condition maps to 5q31.2-32 and OCTN2, an organic cation/carnitine transporter, also maps to the same chromosomal region. Here we test the causative role of OCTN2 in primary carnitine deficiency by searching for mutations in this gene in affected patients. Fibroblasts from patients with primary carnitine deficiency lacked mediated carnitine transport. Transfection of patient's fibroblasts with the OCTN2 cDNA partially restored carnitine transport. Sequencing of the OCTN2 gene revealed different mutations in two unrelated patients. The first patient was homozygous (and both parents heterozygous) for a single base pair substitution converting the codon for Arg-282 to a STOP codon (R282X). The second patient was a compound heterozygote for a paternal 1-bp insertion producing a STOP codon (Y401X) and a maternal 1-bp deletion that produced a frameshift creating a subsequent STOP codon (458X). These mutations decreased the levels of mature OCTN2 mRNA and resulted in nonfunctional transporters, confirming that defects in the organic cation/carnitine transporter OCTN2 are responsible for primary carnitine deficiency.  (+info)

gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle. (15/7123)

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder leading to the widespread development of benign tumors that often contain giant cells. We show that the Drosophila gene gigas encodes a homolog of TSC2, a gene mutated in half of TSC patients. Clones of gigas mutant cells induced in imaginal discs differentiate normally to produce adult structures. However, the cells in these clones are enlarged and repeat S phase without entering M phase. Our results suggest that the TSC disorder may result from an underlying defect in cell cycle control. We have also identified a Drosophila homolog of TSC1.  (+info)

Extent and severity of atherosclerotic involvement of the aortic valve and root in familial hypercholesterolaemia. (16/7123)

OBJECTIVE: To compare the frequency of valvar and supravalvar aortic stenosis in homozygous and heterozygous familial hypercholesterolaemia (FH). DESIGN: Analysis of life time cholesterol exposure and prevalence of aortic atherosclerosis in 84 consecutive cases attending a lipid clinic. SETTING: A tertiary referral centre in London. PATIENTS: Outpatients with FH (six homozygous, 78 heterozygous). INTERVENTIONS: Maintenance of lipid lowering treatment. MAIN OUTCOME MEASURES: Calculated cholesterol x years score (CYS) and echocardiographic measurement of aortic root diameter, aortic valve thickness, and transaortic gradient. RESULTS: Four homozygotes with a mean (SD) CYS of 387 (124) mmol/1 x years had severe aortic stenosis (treatment started after seven years of age), whereas the other two had echocardiographic evidence of supravalvar thickening but no aortic valve stenosis (treatment started before three years of age). On multivariate analysis, mean transaortic gradient correlated significantly with CYS (mean = 523 (175) mmol/1 x years) in heterozygotes (p = 0.0001), but only two had severe aortic valve and root involvement. CONCLUSIONS: In patients with familial hypercholesterolaemia, aortic stenosis is common in homozygotes, and aortic root involvement is always present despite the lower CYS than in heterozygotes. It appears to be determined by short term exposure to high cholesterol concentrations in early life. Conversely, aortic root and valve involvement are rare in heterozygotes and occur only with severe, prolonged hypercholesterolaemia, possibly accelerating age related degenerative effects.  (+info)