A view of modern human origins from Y chromosome microsatellite variation. (17/1034)

The idea that all modern humans share a recent (within the last 150, 000 years) African origin has been proposed and supported on the basis of three observations. Most genetic loci examined to date have (1) shown greater diversity in African populations than in others, (2) placed the first branch between African and all non-African populations in phylogenetic trees, and (3) indicated recent dates for either the molecular coalescence (with the exception of some autosomal and X-chromosomal loci) or for the time of separation between African and non-African populations. We analyze variation at 10 Y chromosome microsatellite loci that were typed in 506 males representing 49 populations and every inhabited continent and find significantly greater Y chromosome diversity in Africa than elsewhere, find the first branch in phylogenetic trees of the continental populations to fall between African and all non-African populations, and date this branching with the (deltamu)2 distance measure to 5800-17,400 or 12,800-36,800 years BP depending on the mutation rate used. The magnitude of the excess Y chromosome diversity in African populations appears to result from a greater antiquity of African populations rather than a greater long-term effective population size. These observations are most consistent with a recent African origin for all modern humans.  (+info)

Oreopithecus was a bipedal ape after all: evidence from the iliac cancellous architecture. (18/1034)

Textural properties and functional morphology of the hip bone cancellous network of Oreopithecus bambolii, a 9- to 7-million-year-old Late Miocene hominoid from Italy, provide insights into the postural and locomotor behavior of this fossil ape. Digital image processing of calibrated hip bone radiographs reveals the occurrence of trabecular features, which, in humans and fossil hominids, are related to vertical support of the body weight, i.e., to bipedality.  (+info)

Early hominid biogeography. (19/1034)

We examined the biogeographic patterns implied by early hominid phylogenies and compared them to the known dispersal patterns of Plio-Pleistocene African mammals. All recent published phylogenies require between four and seven hominid dispersal events between southern Africa, eastern Africa, and the Malawi Rift, a greater number of dispersals than has previously been supposed. Most hominid species dispersed at the same time and in the same direction as other African mammals. However, depending on the ages of critical hominid specimens, many phylogenies identify at least one hominid species that dispersed in the direction opposite that of contemporaneous mammals. This suggests that those hominids may have possessed adaptations that allowed them to depart from continental patterns of mammalian dispersal.  (+info)

Equatorius: a new hominoid genus from the Middle Miocene of Kenya. (20/1034)

A partial hominoid skeleton just older than 15 million years from sediments in the Tugen Hills of north central Kenya mandates a revision of the hominoid genus Kenyapithecus, a possible early member of the great ape-human clade. The Tugen Hills specimen represents a new genus, which also incorporates all material previously referable to Kenyapithecus africanus. The new taxon is derived with respect to earlier Miocene hominoids but is primitive with respect to the younger species Kenyapithecus wickeri and therefore is a late member of the stem hominoid radiation in the East African Miocene.  (+info)

Molecular evolution of the CMT1A-REP region: a human- and chimpanzee-specific repeat. (21/1034)

The CMT1A-REP repeat consists of two copies of a 24-kb sequence on human chromosome 17p11.2-12 that flank a 1.5-Mb region containing a dosage-sensitive gene, peripheral nerve protein-22 (PMP22). Unequal meiotic crossover mediated by misalignment of proximal and distal copies of the CMT1A-REP in humans leads to a 1.5-Mb duplication or deletion associated with two common peripheral nerve diseases, Charcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP). Previous molecular hybridization studies with CMT1A-REP sequences suggested that two copies of the repeat are also found in the chimpanzee, raising the possibility that this unique repeat arose during primate evolution. To further characterize the structure and evolutionary synthesis of the CMT1A-REP repeat, fluorescent in situ hybridization (FISH) analysis and heterologous PCR-based assays were carried out for a series of primates. Genomic DNA was analyzed with primers selected to differentially amplify the centromeric and telomeric ends of the human proximal and distal CMT1A-REP elements and an associated mariner (MLE) sequence. All primate species examined (common chimpanzee, pygmy chimpanzee, gorilla, orangutan, gibbon, baboon, rhesus monkey, green monkey, owl monkey, and galago) tested positive for a copy of the distal element. In addition to humans, only the chimpanzee was found to have a copy of the proximal CMT1A-REP element. All but one primate species (galago) tested positive for the MLE located within the CMT1A-REP sequence. These observations confirm the hypothesis that the distal CMT1A-REP element is the ancestral sequence which was duplicated during primate evolution, provide support for a human-chimpanzee clade, and suggest that insertion of the MLE into the CMT1A-REP sequence occurred in the ancestor of anthropoid primates.  (+info)

Modelling the locomotor energetics of extinct hominids. (22/1034)

Bipedality is the defining characteristic of Hominidae and, as such, an understanding of the adaptive significance and functional implications of bipedality is imperative to any study of human evolution. Hominid bipedality is, presumably, a solution to some problem for the early hominids, one that has much to do with energy expenditure. Until recently, however, little attention could be focused on the quantifiable energetic aspects of bipedality as a unique locomotor form within Primates because of the inability to measure empirically the energy expenditure of non-modern hominids. A recently published method provides a way of circumventing the empirical measurement dilemma by calculating energy expenditure directly from anatomical variables and movement profiles. Although the origins of bipedality remain clouded, two discernible forms of locomotor anatomy are present in the hominid fossil record: the australopithecine and modern configurations. The australopithecine form is best represented by AL 288-1, a partial skeleton of Australopithecus afarensis, and is characterized as having short legs and a wide pelvis. The modern form is represented by modern humans and has long legs and a narrow pelvis. Human walking is optimized to take advantage of the changing levels of potential and kinetic energy that occur as the body and limbs move through the stride cycle. Although this optimization minimizes energy expenditure, some energy is required to maintain motion. I quantify this energy by developing a dynamic model that uses kinematic equations to determine energy expenditure. By representing both configurations with such a model, I can compare their rates of energy expenditure. I find that the australopithecine configuration uses less energy than that of a modern human. Despite arguments presented in the anthropological literature, the shortness of the legs of AL 288-1 provides no evidence that she was burdened with a compromised or transitional locomotor anatomy. Instead, she may well have been an effective biped at walking speeds, not despite her short legs, but rather because of them.  (+info)

Neanderthal cannibalism at Moula-Guercy, Ardeche, France. (23/1034)

The cave site of Moula-Guercy, 80 meters above the modern Rhone River, was occupied by Neanderthals approximately 100,000 years ago. Excavations since 1991 have yielded rich paleontological, paleobotanical, and archaeological assemblages, including parts of six Neanderthals. The Neanderthals are contemporary with stone tools and faunal remains in the same tightly controlled stratigraphic and spatial contexts. The inference of Neanderthal cannibalism at Moula-Guercy is based on comparative analysis of hominid and ungulate bone spatial distributions, modifications by stone tools, and skeletal part representations.  (+info)

Human evolution: origins of modern humans still look recent. (24/1034)

That modern humans have a relatively ancient origin has been suggested on the basis of fossil and genetic evidence. But DNA sequences from an extinct neanderthal, and phylogenetic analyses of hundreds of human and ape sequences, continue to support a recent origin for modern humans.  (+info)