Specific binding of high-mobility-group I (HMGI) protein and histone H1 to the upstream AT-rich region of the murine beta interferon promoter: HMGI protein acts as a potential antirepressor of the promoter. (1/192)

The high-mobility-group I (HMGI) protein is a nonhistone component of active chromatin. In this work, we demonstrate that HMGI protein specifically binds to the AT-rich region of the murine beta interferon (IFN-beta) promoter localized upstream of the murine virus-responsive element (VRE). Contrary to what has been described for the human promoter, HMGI protein did not specifically bind to the VRE of the murine IFN-beta promoter. Stably transfected promoters carrying mutations on this HMGI binding site displayed delayed virus-induced kinetics of transcription. When integrated into chromatin, the mutated promoter remained repressed and never reached normal transcriptional activity. Such a phenomenon was not observed with transiently transfected promoters upon which chromatin was only partially reconstituted. Using UV footprinting, we show that the upstream AT-rich sequences of the murine IFN-beta promoter constitute a preferential binding region for histone H1. Transfection with a plasmid carrying scaffold attachment regions as well as incubation with distamycin led to the derepression of the IFN-beta promoter stably integrated into chromatin. In vitro, HMGI protein was able to displace histone H1 from the upstream AT-rich region of the wild-type promoter but not from the promoter carrying mutations on the upstream high-affinity HMGI binding site. Our results suggest that the binding of histone H1 to the upstream AT-rich region of the promoter might be partly responsible for the constitutive repression of the promoter. The displacement by HMGI protein of histone H1 could help to convert the IFN-beta promoter from a repressed to an active state.  (+info)

High mobility group-I(Y) protein facilitates nuclear factor-kappaB binding and transactivation of the inducible nitric-oxide synthase promoter/enhancer. (2/192)

Nitric oxide (NO), a free radical gas whose production is catalyzed by the enzyme NO synthase, participates in the regulation of multiple organ systems. The inducible isoform of NO synthase (iNOS) is transcriptionally up-regulated by inflammatory stimuli; a critical mediator of this process is nuclear factor (NF)-kappaB. Our objective was to determine which regulatory elements other than NF-kappaB binding sites are important for activation of the iNOS promoter/enhancer. We also wanted to identify transcription factors that may be functioning in conjunction with NF-kappaB (subunits p50 and p65) to drive iNOS transcription. Deletion analysis of the iNOS promoter/enhancer revealed that an AT-rich sequence (-61 to -54) downstream of the NF-kappaB site (-85 to -76) in the 5'-flanking sequence was important for iNOS induction by interleukin-1beta and endotoxin in vascular smooth muscle cells. This AT-rich sequence, corresponding to an octamer (Oct) binding site, bound the architectural transcription factor high mobility group (HMG)-I(Y) protein. Electrophoretic mobility shift assays showed that HMG-I(Y) and NF-kappaB subunit p50 bound to the iNOS promoter/enhancer to form a ternary complex. The formation of this complex required HMG-I(Y) binding at the Oct site. The location of an HMG-I(Y) binding site typically overlaps that of a recruited transcription factor. In the iNOS promoter/enhancer, however, HMG-I(Y) formed a complex with p50 while binding downstream of the NF-kappaB site. Furthermore, overexpression of HMG-I(Y) potentiated iNOS promoter/enhancer activity by p50 and p65 in transfection experiments, suggesting that HMG-I(Y) contributes to the transactivation of iNOS by NF-kappaB.  (+info)

The host-cell architectural protein HMG I(Y) modulates binding of herpes simplex virus type 1 ICP4 to its cognate promoter. (3/192)

The productive infection cycle of herpes simplex virus is controlled in part by the action of ICP4, an immediate-early gene product that acts as both an activator and repressor of transcription. ICP4 is autoregulatory, and IE-3, the gene that encodes it, contains a high-affinity binding site for the protein at its cap site. Previously, we had demonstrated that this site could be occupied by proteins found in nuclear extracts from uninfected cells. A HeLa cell cDNA expression library was screened with a DNA probe containing the IE-3 gene cap site, and clones expressing the architectural chromatin proteins HMG I and HMG Y were identified by this technique. HMG I is shown to augment binding of ICP4 to its cognate site in in vitro assays and to enhance the activity of this protein in short-term transient expression assays.  (+info)

Determination of high mobility group I(Y) expression level in colorectal neoplasias: a potential diagnostic marker. (4/192)

High mobility group I(Y) [HMGI(Y)] proteins are architectural factors abundantly expressed during embryogenesis, and their overexpression is known to be closely associated with neoplastic transformation of cells. This study was performed to investigate whether determination of HMGI(Y) expression level could assist in (a) differential diagnosis between colorectal carcinoma, adenoma, and normal tissue and (b) determination of the prognosis of patients with colorectal cancer. To this end, HMGI(Y) expression was determined at both the protein and mRNA levels in 30 colorectal carcinomas, 26 adenomas, and 23 normal mucosa samples, and further correlations between the protein expression levels and various clinicopathological parameters, such as depth of tumor invasion, lymphatic and/or venous involvement, regional lymph node metastasis, and Dukes' stage, were determined in 30 carcinoma cases. The expression of HMGI(Y) proteins was significantly increased in carcinoma and adenoma with severe atypia compared with that in adenoma with less atypia and normal colorectal mucosa. This increase in HMGI(Y) protein expression was found to be because of an increase in its mRNA expression by RNA in situ hybridization analysis. Clinicopathological analysis revealed that the level of HMGI(Y) protein expression was significantly correlated with parameters known to be indicative of a poor prognosis in colorectal cancer patients. These findings indicate that the determination of the HMGI(Y) protein expression level could be a potential marker for the diagnosis of colorectal neoplasias and can be of great value in predicting the prognosis of patients with colorectal cancer.  (+info)

Directional binding of HMG-I(Y) on four-way junction DNA and the molecular basis for competitive binding with HMG-1 and histone H1. (5/192)

Histone H1, HMG-1 and HMG-I(Y) are mammalian nuclear proteins possessing distinctive DNA-binding domain structures that share the common property of preferentially binding to four-way junction (4H) DNA, an in vitro mimic of the in vivo genetic recombination intermediate known as the Holliday junction. Nevertheless, these three proteins bind to 4H DNA in vitro with very different affinities and in a mutually exclusive manner. To investigate the molecular basis for these distinctive binding characteristics, we employed base pair resolution hydroxyl radical footprinting to determine the precise sites of nucleotide interactions of both HMG-1 and histone H1 on 4H DNA and compared these contacts with those previously described for HMG-I(Y) on the same substrate. Each of these proteins had a unique binding pattern on 4H DNA and yet shared certain common nucleotide contacts on the arms of the 4H DNA molecule near the branch point. Both the HMG-I(Y) and HMG-1 proteins made specific contacts across the 4H DNA branch point, as well as interacting at discrete sites on the arms, whereas the globular domain of histone H1 bound exclusively to the arms of the 4H DNA substrate without contacting nucleotides at the crossover region. Experiments employing the chemical cleavage reagent 1, 10-orthophenanthroline copper(II) attached to the C-terminal end of a site-specifically mutagenized HMG-I(Y) protein molecule demonstrated that this protein binds to 4H DNA in a distinctly polar, direction-specific manner. Together these results provide an attractive molecular explanation for the observed mutually exclusive 4H DNA-binding characteristics of these proteins and also allow for critical assessment of proposed models for their interaction with 4H DNA substrates. The results also have important implications concerning the possible in vivo roles of HMG-I(Y), histone H1 and HMG-1 in biological processes such as genetic recombination and retroviral integration.  (+info)

HMGI(Y) and HMGI-C genes are expressed in neuroblastoma cell lines and tumors and affect retinoic acid responsiveness. (6/192)

HMGI-C and HMGI(Y) are architectural DNA-binding proteins that participate in the conformational regulation of active chromatin. Their pattern of expression in embryonal and adult tissues, the analysis of the "pygmy" phenotype induced by the inactivation of the HMGI-C gene, and their frequent qualitative or quantitative alteration in experimental and human tumors indicate their pivotal role in the control of cell growth, differentiation, and tumorigenesis in several tissues representative of the epithelial, mesenchymal, and hematopoietic lineages. In contrast, very little information is available on their expression and function in neural cells. Here, we investigated the expression of the HMGI(Y) and HMGI-C genes in neuroblastoma (NB), a tumor arising from an alteration of the normal differentiation of neural crest-derived cells and in embryonal and adult adrenal tissue. Although HMGI(Y) is constitutively expressed in the embryonal and adult adrenal gland and in all of the NB cell lines and ex vivo tumors examined, its regulation appears to be associated to growth inhibition and differentiation because we observed that HMGI(Y) expression is reduced by retinoic acid (RA) in several NB cell lines that are induced to differentiate into postmitotic neurons, whereas it is up-regulated by RA in cells that fail to differentiate. Furthermore, the decrease of HMGI(Y) expression observed in RA-induced growth arrest and differentiation is abrogated in cells that have been made insensitive to this drug by NMYC overexpression. In contrast, HMGI-C expression is down-regulated during the development of the adrenal gland, completely absent in the adult individual, and only detectable in a subset of ex vivo NB tumors and in RA-resistant NB cell lines. We provide evidence of a causal link between HMGI-C expression and resistance to the growth arrest induced by RA in NB cell lines because exogenous HMGI-C expression in HMGI-C-negative and RA-sensitive cells is sufficient to convert them into RA-resistant cells. Therefore, we suggest that HMGI-C and HMGI(Y) may participate in growth- and differentiation-related tumor progression events of neuroectodermal derivatives.  (+info)

The HMG-I(Y) A.T-hook peptide motif confers DNA-binding specificity to a structured chimeric protein. (7/192)

Chromosomal translocations involving genes coding for members of the HMG-I(Y) family of "high mobility group" non-histone chromatin proteins (HMG-I, HMG-Y, and HMG-IC) have been observed in numerous types of human tumors. Many of these gene rearrangements result in the creation of chimeric proteins in which the DNA-binding domains of the HMG-I(Y) proteins, the so-called A.T-hook motifs, have been fused to heterologous peptide sequences. Although little is known about either the structure or biophysical properties of these naturally occurring fusion proteins, the suggestion has been made that such chimeras have probably assumed an altered in vivo DNA-binding specificity due to the presence of the A.T-hook motifs. To investigate this possibility, we performed in vitro "domain-swap" experiments using a model protein fusion system in which a single A. T-hook peptide was exchanged for a corresponding length peptide in the well characterized "B-box" DNA-binding domain of the HMG-1 non-histone chromatin protein. Here we report that chimeric A. T-hook/B-box hybrids exhibit in vitro DNA-binding characteristics resembling those of wild type HMG-I(Y) protein, rather than the HMG-1 protein. These results strongly suggest that the chimeric fusion proteins produced in human tumors as a result of HMG-I(Y) gene chromosomal translocations also retain A.T-hook-imparted DNA-binding properties in vivo.  (+info)

The role of HMG I(Y) in the assembly and function of the IFN-beta enhanceosome. (8/192)

Transcriptional activation of the virus inducible enhancer of the human interferon-beta (IFN-beta) gene in response to virus infection requires the assembly of an enhanceosome, consisting of the transcriptional activators NF-kappaB, ATF-2/c-Jun, IRFs and the architectural protein of the mammalian high mobility group I(Y) [HMG I(Y)]. Here, we demonstrate that the first step in enhanceosome assembly, i.e. HMG I(Y)-dependent recruitment of NF-kappaB and ATF-2/c-Jun to the enhancer, is facilitated by discrete regions of HMG I and is mediated by allosteric changes induced in the DNA by HMG I(Y) and not by protein-protein interactions between HMG I(Y) and these proteins. However, we show that completion of the enhanceosome assembly process requires protein-protein interactions between HMG I(Y) and the activators. Finally, we demonstrate that once assembled, the IFN-beta enhanceosome is an unusually stable nucleoprotein structure that can activate transcription at high levels by promoting multiple rounds of reinitiation of transcription.  (+info)