Identification of a gene coding for a new squamous cell carcinoma antigen recognized by the CTL. (41/1082)

Peptide-based specific immunotherapy has resulted in tumor regression in some melanoma patients. However, tumor Ags and peptides for specific immunotherapy, except for treatment of melanomas, have not yet been well identified. In this study, we report a gene encoding a new squamous cell carcinoma (SCC) Ag recognized by cells of the HLA-A24-restricted and tumor-specific CTL line. This gene with 3958-bp length was transcribed from the chromosome 6q22 with six exons, and its mRNA was ubiquitously expressed in both SCCs and normal tissues, and partly expressed in adenocarcinomas. The deduced 958-aa sequence encoded by this gene showed no similarity to any known amino acid sequences. This gene product had a characteristic of an endoplasmic reticulum-resident protein. A 100-kDa protein was detected in the vast majority of SCCs from various tissues, in majority of renal cell carcinomas and brain tumors, and in about one-third of melanomas and adenocarcinomas from various organs other than the breast. In contrast, it was not expressed at all in any of the normal cells or tissues tested, including the testis and fetal liver. Three different peptides at positions 93-101, 161-169, and 899-907 of this Ag were recognized by this CTL line, and all of them induced HLA-A24-restricted and tumor-specific CTLs from PBMCs of SCC patients. Therefore, these peptides may be useful for peptide-based specific immunotherapy of HLA-A24+ patients with SCC in various organs, as well as for treatment of other cancer.  (+info)

HLA-A, -B and -DR antigen frequencies of the London Cord Blood Bank units differ from those found in established bone marrow donor registries. (42/1082)

Patients requiring allogeneic stem cell transplantation who do not have an HLA-matched related donor can sometimes obtain an unrelated donor by searching volunteer registries. The majority of donors in the registries are Caucasoid, which results in a lower probability of a non-Caucasoid patient finding a suitable donor. Cord blood is increasingly used as a source of haematopoietic stem cells for allogeneic bone marrow reconstitution and so far the London Cord Blood Bank has banked almost 3000 cord blood units. An analysis of the first 1500 units banked showed that more than 30% of the London Cord Blood Bank units are derived from UK ethnic minorities compared with only 2% of individuals recruited locally for the British Bone Marrow Registry (BBMR). The HLA types found in these cord blood units reflect their ethnic diversity and include: HLA-A34, A36, A80, B75, B61, B53, B78, B81 and B82. The units stored by the London Cord Blood Bank show an HLA profile which differs considerably from that of locally typed adult volunteers for the BBMR panel and this should help to increase the chances of obtaining acceptably HLA-matched donors for patients from ethnic minorities. Bone Marrow Transplantation (2000) 25, 475-481.  (+info)

Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. (43/1082)

The nature and frequency of human histocompatibility leukocyte antigen (HLA) class I loss mechanisms in primary cancers are largely unknown. We used flow cytometry and molecular analyses to concurrently assess allele-specific HLA phenotypes and genotypes in subpopulations from 30 freshly isolated cervical tumor cell suspensions.Tumor-associated HLA class I alterations were present in 90% of the lesions tested, comprising four altered pheno/genotype categories: (a) HLA-A or -B allelic loss (17%), mostly associated with gene mutations; (b) HLA haplotype loss, associated with loss of heterozygosity at 6p (50%). This category included cases with additional loss of a (third) HLA-A or -B allele due to mutation, as well as one case with an HLA class I-negative tumor cell subpopulation, caused by a beta2-microglobulin gene mutation; (c) Total HLA class I antigen loss and retention of heterozygosity (ROH) at 6p (10%); and (d) B locus or HLA-A/B downregulation associated with ROH and/or allelic imbalance at 6p (10%). Normal HLA phenotypes and ROH at 6p were observed in 10% of the cases. One case could not be classified (3%). Altered HLA class I antigen expression occurs in most cervical cancers, is diverse, and is mainly caused by genetic changes. Combined with widespread tumor heterogeneity, these changes have profound implications for natural immunity and T cell-based immunotherapy in cervical cancer.  (+info)

A wild-type sequence p53 peptide presented by HLA-A24 induces cytotoxic T lymphocytes that recognize squamous cell carcinomas of the head and neck. (44/1082)

Evidence has accumulated indicating that HLA-A2-restricted CTLs specific for human wild-type sequence p53 epitopes lyse tumor cells expressing mutant p53. To explore the possibility that wild-type sequence p53 peptides could also be used in vaccines for patients expressing HLA-A24 antigen, another frequent HLA class I allele, we investigated the induction of HLA-A24-restricted p53-specific CTLs from the peripheral blood lymphocytes of normal donors. Of six p53-derived peptides possessing an HLA-A24 binding motif, the p53 peptide 125-134 (p53(125-134)) was found to have a high binding capacity and induced peptide-specific CTLs from peripheral blood mononuclear cells, using peptide-pulsed autologous dendritic cells and subsequent cultivation with cytokines interleukin 2 and interleukin 7. Bulk CTL populations lysed peptide-pulsed HLA-A24+ targets as well as HLA-A24+ squamous cell carcinoma of the head and neck (SCCHN) cell lines. However, IFN-gamma pretreatment of HLA-A24+ SCCHN cell lines was necessary for lysis, suggesting that a ligand density higher than that normally expressed by tumor cells is required for these CTLs to mediate lysis. Moreover, a cloned CTL, designated TH#99, isolated from the bulk population by limiting dilution, lysed HLA-A24+ SCCHN targets more efficiently than the bulk CTL population. Lysis was inhibited by anti-HLA class I monoclonal antibody but not by anti-HLA-DR monoclonal antibody. These results indicate that HLA-A24-restricted CTLs recognizing the wild-type sequence p53(125-134) can be generated using autologous dendritic cells from precursors present in peripheral blood lymphocytes obtained from normal HLA-A24+ donors. This finding suggests that vaccine strategies targeting wild-type sequence p53 epitopes can be extended to a wider range of cancer patients.  (+info)

Analysis of individual specific cytotoxic T lymphocytes for two MAGE-3-derived epitopes presented by HLA-A24. (45/1082)

BACKGROUND: The human MAGE-3 gene encodes tumor-specific antigens that are recognized by cytotoxic T lymphocytes (CTLs) and expressed in a high percentage of various malignant tumors. Of the five MAGE-3-derived CTL epitopes identified to date, two nonapeptides (TFPDLESEF and IMPKAGLLI, designated MAGE-3.A24a and MAGE-3.A24b, respectively) can be expressed on the tumor surface by binding to the HLA-A24 molecule, which is the most frequent HLA class I molecule in Asian populations. To compare the immunogenecities of the two peptides, individual specific CTL lines were generated for each peptide (MAGE-3.A24a and MAGE-3.A24b). METHODS: Peripheral blood mononuclear cells (PBMCs) from four HLA-A24+ healthy donors were stimulated in vitro with autologous dendritic cells pulsed with MAGE-3.A24a, MAGE-3.A24b or both and were subsequently cultivated with a cytokine combination including interleukin-2. RESULTS: We succeeded in generating peptide-specific CTL lines in two of the four donors. The two CTL lines showed similar cytolytic levels against three MAGE-3+/HLA-A24+ cancer cell lines and also target cells pulsed with the corresponding peptide. Cytolytic activities were blocked by either anti-CD8 or anti-HLA-A24 monoclonal antibodies. CONCLUSIONS: The results suggest that MAGE-3.A24a and MAGE-3.A24b peptides have equal potential in inducing MAGE-3-specific and HLA-A24-restricted CTLs.  (+info)

Classical and nonclassical class I major histocompatibility complex molecules exhibit subtle conformational differences that affect binding to CD8alphaalpha. (46/1082)

The cell surface molecules CD4 and CD8 greatly enhance the sensitivity of T-cell antigen recognition, acting as "co-receptors" by binding to the same major histocompatibility complex (MHC) molecules as the T-cell receptor (TCR). Here we use surface plasmon resonance to study the binding of CD8alphaalpha to class I MHC molecules. CD8alphaalpha bound the classical MHC molecules HLA-A*0201, -A*1101, -B*3501, and -C*0702 with dissociation constants (K(d)) of 90-220 microm, a range of affinities distinctly lower than that of TCR/peptide-MHC interaction. We suggest such affinities apply to most CD8alphaalpha/classical class I MHC interactions and may be optimal for T-cell recognition. In contrast, CD8alphaalpha bound both HLA-A*6801 and B*4801 with a significantly lower affinity (>/=1 mm), consistent with the finding that interactions with these alleles are unable to mediate cell-cell adhesion. Interestingly, CD8alphaalpha bound normally to the nonclassical MHC molecule HLA-G (K(d) approximately 150 microm), but only weakly to the natural killer cell receptor ligand HLA-E (K(d) >/= 1 mm). Site-directed mutagenesis experiments revealed that variation in CD8alphaalpha binding affinity can be explained by amino acid differences within the alpha3 domain. Taken together with crystallographic studies, these results indicate that subtle conformational changes in the solvent exposed alpha3 domain loop (residues 223-229) can account for the differential ability of both classical and nonclassical class I MHC molecules to bind CD8.  (+info)

Generation and purification of CD8+ melan-A-specific cytotoxic T lymphocytes for adoptive transfer in tumor immunotherapy. (47/1082)

Tumor antigens that might serve as potential targets for adoptive T-cell therapy have been defined in different tumor entities, especially in malignant melanoma. To generate conditions to induce primary T-cell responses against different HLA-A*0201-restricted melanoma peptides and to allow further expansion of peptide-specific T cells for adoptive transfer, CD8+-purified T cells from healthy donors were stimulated with Melan-A-pulsed autologous dendritic cells. Dendritic cells were generated in vitro from monocytes with granulocyte macrophage colony-stimulating factor, interleukin-4, and transforming growth factor-beta1. After 3-4 weekly stimulation cycles with Melan-A-pulsed DCs, we were able to induce a strong peptide-specific CTL response in vitro. MHC-peptide tetramer staining revealed a frequency of up to 3.5% CD8+/Melan-A+ T cells. Additional antigen-independent expansion with anti-CD3/anti-CD28 monoclonal antibodies together with interleukin-2 gave rise to 600-fold expansion of CD8+ CTLs that maintained Melan-A specificity and were able to efficiently lyse Melan-A-expressing melanoma cells. To enrich antigen-specific T cells in vitro, we used a recently established technology for analysis and sorting of live cells according to secreted cytokines. In the present study, we demonstrated that Melan-A-specific T cells can be purified by magnetic separation according to secreted IFN-gamma. These cells revealed a very potent monospecific CTL response, even at low E:T ratios, against Melan-A-pulsed and Melan-A-expressing target cells. Altogether, our study demonstrated that we have developed an efficient method for generating large numbers of peptide-specific T cells in vitro that may be used for adoptive T-cell transfer in tumor immunotherapy.  (+info)

High frequency of autologous anti-melanoma CTL directed against an antigen generated by a point mutation in a new helicase gene. (48/1082)

We have identified an Ag recognized by autologous CTL on the melanoma cells of a patient who enjoyed an unusually favorable clinical evolution. The antigenic peptide, which is presented by HLA-A28 molecules, is encoded by a mutated sequence in a new gene. This gene, which was named MUM-3, is expressed ubiquitously and shows homology with the RNA helicase gene family. Limiting dilution analysis indicated that at least 0.15% of the blood CD8 T cells were tumor-specific CTL precursors. The MUM-3 Ag was recognized by 90% of these CTL, indicating that it is the dominant target Ag of the tumor-specific CTL response. The high frequency of anti-MUM-3 CTL was confirmed with tetramers of soluble HLA-A28 molecules loaded with the antigenic peptide. MUM-3 tetramers stained 1.2% of blood CD8 cells, a frequency that has never been reported for T cells directed against a strictly tumor-specific Ag. To confirm these results, the CD8 T cells that were clearly labeled with tetramers were restimulated in clonal conditions. About 90% of these cells proliferated, and all the resulting clones proved lytic and MUM-3 specific. By improving the conditions used for the in vitro restimulation of CTL precursors by the tumor cells, the same frequency could be obtained in limiting dilution analysis. These results show that some cancer patients have a high frequency of circulating CTL that are directed against a strictly tumor-specific Ag. These CTL are responsive to restimulation in vitro and are easily detected with tetramers. Such responses may therefore be an achievable goal for therapeutic vaccination with tumor-specific Ags.  (+info)