Design, characterization and testing of tRNA3Lys-based hammerhead ribozymes. (65/23412)

A hammerhead ribozyme targeted against the HIV-1 env coding region was expressed as part of the anticodon loop of human tRNA3Lys without sacrificing tRNA stability or ribozyme catalytic activity. These tRNA-ribozymes were isolated from a library which was designed to contain linkers (sequences connecting the ribozyme to the anticodon loop) of random sequence and variable length. The ribozyme target site was provided in cis during selection and in trans during subsequent characterization. tRNA-ribozymes that possessed ideal combinations of linkers were expected to recognize the cis target site more freely and undergo cleavage. The cleaved molecules were isolated, cloned and characterized. Active tRNA-ribozymes were identified and the structural features conducive to cleavage were defined. The selected tRNA-ribozymes were stable, possessed cleavage rates lower or similar to the linear hammerhead ribozyme, and could be transcribed by an extract containing RNA polymerase III. Retroviral vectors expressing tRNA-ribozymes were tested in a human CD4+ T cell line and were shown to inhibit HIV-1 replication. These tRNA3Lys-based hammerhead ribozymes should therefore prove to be valuable for both basic and applied research. Special application is sought in HIV-1 or HIV-2 gene therapy.  (+info)

Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin. (66/23412)

Human chorionic gonadotropin (hCG) preparations contain activity against HIV type 1 (HIV-1). However, there has been controversy about whether some biological activities of hCG beta-subunit (hCGbeta) preparations are caused by the beta-subunit itself or other proteins present in the preparations. We report here the purification, characterization, and identification of three enzymes with anti-HIV activity present in the beta-core fraction of hCGbeta prepared from the urine of pregnant women. The N-terminal amino acid sequence of one protein is identical to human urinary lysozyme C, and those of the other two are identical to human RNase A and urinary RNase U. We thus refer to these proteins as AVL (antiviral lysozyme) and AVR (antiviral RNases). In addition to HIV-1 inhibition, AVL is capable of lysing Micrococcus lysodeikticus. AVR digests a variety of RNA substrates, including RNA from HIV-1-infected cells. We also find that lysozyme from chicken egg white, human milk, and human neutrophils and RNase A from bovine pancreas possess activity against HIV-1. These findings may offer additional strategies for the treatment of HIV-1 infection.  (+info)

HIV-1 Gag shares a signature motif with annexin (Anx7), which is required for virus replication. (67/23412)

Genetic and biochemical analyses of the Gag protein of HIV-1 indicate a crucial role for this protein in several functions related to viral replication, including viral assembly. It has been suggested that Gag may fulfill some of the functions by recruiting host cellular protein(s). In our effort to identify structural and functional homologies between Gag and cellular cytoskeletal and secretory proteins involved in transport, we observed that HIV-1 Gag contains a unique PGQM motif in the capsid region. This motif was initially noted in the regulatory domain of synexin the membrane fusion protein of Xenopus laevis. To evaluate the functional significance of the highly conserved PGQM motif, we introduced alanine (A) in place of individual residues of the PGQM and deleted the motif altogether in a Gag expression plasmid and in an HIV-1 proviral DNA. The proviral DNA containing mutations in the PGQM motif showed altered expression, assembly, and release of viral particles in comparison to parental (NL4-3) DNA. When tested in multiple- and single-round replication assays, the mutant viruses exhibited distinct replication phenotypes; the viruses containing the A for the G and Q residues failed to replicate, whereas A in place of the P and M residues did not inhibit viral replication. Deletion of the tetrapeptide also resulted in the inhibition of replication. These results suggest that the PGQM motif may play an important role in the infection process of HIV-1 by facilitating protein-protein interactions between viral and/or viral and cellular proteins.  (+info)

Specific interaction of Tat with the human but not rodent P-TEFb complex mediates the species-specific Tat activation of HIV-1 transcription. (68/23412)

Tat stimulation of HIV-1 transcriptional elongation is species-specific and is believed to require a specific cellular cofactor present in many human and primate cells but not in nonpermissive rodent cells. Human P-TEFb, composed of Cdk9 and cyclin T1, is a general transcription elongation factor that phosphorylates the C-terminal domain of RNA polymerase II. Previous studies have also implicated P-TEFb as a Tat-specific cellular cofactor and, in particular, human cyclin T1 as responsible for the species-specific Tat activation. To obtain functional evidence in support of these hypotheses, we generated and examined the activities of human-rodent "hybrid" P-TEFb complexes. We found that P-TEFb complexes containing human cyclin T1 complexed with either human or rodent Cdk9 supported Tat transactivation and interacted with the Tat activation domain and the HIV-1 TAR RNA element to form TAR loop-dependent ribonucleoprotein complexes. Although a stable complex containing rodent cyclin T1 and human Cdk9 was capable of phosphorylating CTD and mediating basal HIV-1 elongation, it failed to interact with Tat and to mediate Tat transactivation, indicating that the abilities of P-TEFb to support basal elongation and Tat activation can be separated. Together, our data indicated that the specific interaction of human P-TEFb with Tat/TAR, mostly through cyclin T1, is crucial for P-TEFb to mediate a Tat-specific and species-restricted activation of HIV-1 transcription. Amino acid residues unique to human Cdk9 also contributed partially to the formation of the P-TEFb-Tat-TAR complex. Moreover, the cyclin box of cyclin T1 and its immediate flanking region are largely responsible for the specific P-TEFb-Tat interaction.  (+info)

Stable transduction of quiescent CD34(+)CD38(-) human hematopoietic cells by HIV-1-based lentiviral vectors. (69/23412)

We compared the efficiency of transduction by an HIV-1-based lentiviral vector to that by a Moloney murine leukemia virus (MLV) retroviral vector, using stringent in vitro assays of primitive, quiescent human hematopoietic progenitor cells. Each construct contained the enhanced green fluorescent protein (GFP) as a reporter gene. The lentiviral vector, but not the MLV vector, expressed GFP in nondivided CD34(+) cells (45.5% GFP+) and in CD34(+)CD38(-) cells in G0 (12.4% GFP+), 48 hr after transduction. However, GFP could also be detected short-term in CD34(+) cells transduced with a lentiviral vector that contained a mutated integrase gene. The level of stable transduction from integrated vector was determined after extended long-term bone marrow culture. Both MLV vectors and lentiviral vectors efficiently transduced cytokine-stimulated CD34(+) cells. The MLV vector did not transduce more primitive, quiescent CD34(+)CD38(-) cells (n = 8). In contrast, stable transduction of CD34(+)CD38(-) cells by the lentiviral vector was seen for over 15 weeks of extended long-term culture (9.2 +/- 5.2%, n = 7). GFP expression in clones from single CD34(+)CD38(-) cells confirmed efficient, stable lentiviral transduction in 29% of early and late-proliferating cells. In the absence of growth factors during transduction, only the lentiviral vector was able to transduce CD34(+) and CD34(+)CD38(-) cells (13.5 +/- 2.5%, n = 11 and 12.2 +/- 9.7%, n = 4, respectively). The lentiviral vector is clearly superior to the MLV vector for transduction of quiescent, primitive human hematopoietic progenitor cells and may provide therapeutically useful levels of gene transfer into human hematopoietic stem cells.  (+info)

Intracellular adhesion molecule-1 modulates beta-chemokines and directly costimulates T cells in vivo. (70/23412)

The potential roles of adhesion molecules in the expansion of T cell-mediated immune responses in the periphery were examined using DNA immunogen constructs as model antigens. We coimmunized cDNA expression cassettes encoding the adhesion molecules intracellular adhesion molecule-1 (ICAM-1), lymphocyte function associated-3 (LFA-3), and vascular cell adhesion molecule-1 (VCAM-1) along with DNA immunogens, and we analyzed the resulting antigen-specific immune responses. We observed that antigen-specific T-cell responses can be enhanced by the coexpression of DNA immunogen and adhesion molecules ICAM-1 and LFA-3. Coexpression of ICAM-1 or LFA-3 molecules along with DNA immunogens resulted in a significant enhancement of T-helper cell proliferative responses. In addition, coimmunization with pCICAM-1 (and more moderately with pCLFA-3) resulted in a dramatic enhancement of CD8-restricted cytotoxic T-lymphocyte responses. Although VCAM-1 and ICAM-1 are similar in size, VCAM-1 coimmunization did not have any measurable effect on cell-mediated responses. These results suggest that ICAM-1 and LFA-3 provide direct T-cell costimulation. These observations are further supported by the finding that coinjection with ICAM-1 dramatically enhanced the level of interferon-gamma (IFN-gamma) and beta-chemokines macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, and regulated on activation normal T-cell expression and secreted (RANTES) produced by stimulated T cells. Through comparative studies, we observed that ICAM-1/LFA-1 T-cell costimulatory pathways are independent of CD86/CD28 pathways and that they may synergistically expand T-cell responses in vivo.  (+info)

Determinants of the natural history of human immunodeficiency virus type 1 infection. (71/23412)

Variation in the time to AIDS and duration of survival of human immunodeficiency virus (HIV)-1-infected persons was recognized early in the epidemic. Recent studies have indicated that the rate of viral replication, as manifest by the number of copies of HIV RNA per milliliter of plasma, is a major determinant of outcome in an infected person. The predictive power of the measurement of plasma HIV RNA copy number is enhanced by combining this result with the CD4 lymphocyte number. The determinants of the rate of viral replication are less clearly defined. Recent studies suggest that polymorphism of the chemokine receptors, required for cellular infection, plays a role in regulating the rate of viral replication. The subsequent adaptive evolution of HIV-1 to the host's immune response is a consequence of this dynamic of the virus. Complicating opportunistic infections also appear to enhance HIV-1 replication, while antiviral therapy, in contrast, can and does suppress viral replication.  (+info)

Dual and recombinant infections: an integral part of the HIV-1 epidemic in Brazil. (72/23412)

We systematically evaluated multiple and recombinant infections in an HIV-infected population selected for vaccine trials. Seventy-nine HIV-1 infected persons in a clinical cohort study in Rio de Janeiro, Brazil, were evaluated for 1 year. A combination of molecular screening assays and DNA sequencing showed 3 dual infections (3.8%), 6 recombinant infections (7.6%), and 70 (88.6%) infections involving single viral subtypes. In the three dual infections, we identified HIV-1 subtypes F and B, F and D, and B and D; in contrast, the single and recombinant infections involved only HIV-1 subtypes B and F. The recombinants had five distinct B/F mosaic patterns: Bgag-p17/Bgag-p24/Fpol/Benv, Fgag-p17/Bgag-p24/Fpol/Fenv, Bgag-p17/B-Fgag-p24/Fpol/Fenv, Bgag-p17/B-Fgag-p24/Fpol/Benv, and Fgag-p17/B-Fgag-p24/Fpol/Fenv. No association was found between dual or recombinant infections and demographic or clinical variables. These findings indicate that dual and recombinant infections are emerging as an integral part of the HIV/AIDS epidemic in Brazil and emphasize the heterogenous character of epidemics emerging in countries where multiple viral subtypes coexist.  (+info)