Conformational state of DNA in chromatin subunits. Circular dichroism, melting, and ethidium bromide binding analysis. (9/14784)

This study compares some physical properties of DNA in native chromatin and mono-, di-, trinucleosomes obtained after mild micrococcal nuclease digestion. Melting curves and derivatives are shown to be very similar from one sample to another although a shift from 79 to 82 degrees C is observed between the mainly monophasic peak of multimers and chromatin. Careful analysis of the positive band of the circular dichroism spectra shows the appearance of a shoulder at 275nm, the intensity of which increases from the mono- to the di- and trinucleosome. This shoulder is maximum for native chromatin. At the same time binding isotherms of ethidium - bromide are characterized by two highly fluorescent binding sites for all the samples but the product KN of the apparent binding constant of the higher affinity binding sites by the apparent number of those sites increases from the mono- to the di- and trinucleosome. There again the valus is maximum for native chromatin. Such results strongly suggest that the native state of chromatin requires something more than the indefinite repeat of an elementary subunit.  (+info)

Chromatin nu bodies: isolation, subfractionation and physical characterization. (10/14784)

Monomer chromatin subunit particles (nu1) have been isolated in gram quantities by large-scale zonal centrifugation of micrococcal nuclease digests of chicken erythrocyte nuclei. nu1 can be stored, apparently indefinitely, frozen in 0.2 mM EDTA (pH 7.0) at less than or equal to 25 degrees C. Aliquots of the stored monomers have been subfractionated by dialysis against 0.1 M KCl buffers into a soluble fraction containing equimolar amounts of H4, H3, H2A, H2B associated with a DNA fragment of approximately 130-140 nucleotide pairs, and a precipitated fraction containing all of the histones including H5 and H1 associated with DNA fragments. The total nu1 and the KCl-soluble fraction of nu1 have been examined by sedimentation, diffusion, sedimentation equilibrium ultracentrifugation, low-angle X-ray diffraction, and electron microscopy. Physical parameters from all of these techniques are presented and correlated in this study.  (+info)

Human biotinidase isn't just for recycling biotin. (11/14784)

For years, the major role of biotin has been as the coenzyme for four carboxylases in humans. Although there has been evidence that biotin might have other functions, none has been firmly established. The discovery that human serum biotinidase has biotinyl-transferase activity, in addition to biotinidase hydrolase activity, presents new possibilities for the role of biotinidase in biotin metabolism. Specific transfer of biotin to histones by biotinidase provides a possible explanation for why biotin is found in the nucleus and the nature of its role in the regulation of protein transcription. Future studies will help to determine the functions of biotinidase in biotin metabolism and in disease states.  (+info)

Cytokinin activation of Arabidopsis cell division through a D-type cyclin. (12/14784)

Cytokinins are plant hormones that regulate plant cell division. The D-type cyclin CycD3 was found to be elevated in a mutant of Arabidopsis with a high level of cytokinin and to be rapidly induced by cytokinin application in both cell cultures and whole plants. Constitutive expression of CycD3 in transgenic plants allowed induction and maintenance of cell division in the absence of exogenous cytokinin. Results suggest that cytokinin activates Arabidopsis cell division through induction of CycD3 at the G1-S cell cycle phase transition.  (+info)

Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. (13/14784)

Male infertility in HR6B knockout mice is associated with impairment of spermatogenesis. The HR6B gene is a mammalian, autosomal homolog of the Saccharomyces cerevisiae gene Rad6 encoding a ubiquitin-conjugating enzyme. In addition, X-chromosomal HR6A has been identified, in human and mouse. RAD6 in yeast is required for a variety of cellular functions, including sporulation, DNA repair, and mutagenesis. Since RAD6 and its mammalian homologs can ubiquitinate histones in vitro, we have investigated the pattern of histone ubiquitination in mouse testis. By immunoblot and immunohistochemical analysis of wild-type mouse testis, a high amount of ubiquitinated H2A (uH2A) was detected in pachytene spermatocytes. This signal became undetectable in round spermatids, but then increased again during a relatively short developmental period, in elongating spermatids. No other ubiquitinated histones were observed. In the HR6B knockout mice, we failed to detect an overt defect in the overall pattern of histone ubiquitination. For somatic cell types, it has been shown that histone ubiquitination is associated with destabilization of nucleosomes, in relation to active gene transcription. Unexpectedly, the most intense uH2A signal in pachytene spermatocytes was detected in the sex body, an inactive nuclear structure that contains the heterochromatic X and Y chromosomes. The postmeiotic uH2A immunoexpression in elongating spermatids indicates that nucleosome destabilization induced by histone ubiquitination may play a facilitating role during histone-to-protamine replacement.  (+info)

Altered expression of the IGF-1 receptor in a tamoxifen-resistant human breast cancer cell line. (14/14784)

The relationship between oestrogen (E2) and insulin-like growth factor-one (IGF-1) was examined in both tamoxifen-sensitive (MCF 7/5-21) and tamoxifen-resistant (MCF 7/5-23) subclones of the MCF 7 cell line. Both subclones were grown in defined, serum-free (SF) medium over a period of 7 days with the addition of E2 or IGF-1 or a combination of both agents. Growth of both MCF 7/5-21 and 7/5-23 cells was stimulated (245% and 350%, respectively) by E2. However, only the growth of MCF 7/5-23 cells was stimulated (266%) by IGF-1. A combination of E2 and IGF-1 significantly enhanced MCF 7/5-21 and 7/5-23 cell growth (581% and 695%, respectively). E2-induced IGF-1 receptor (IGF-1R) levels (as measured by 125I-IGF-1 binding and Northern analyses) in only MCF 7/5-23 cells. This effect was partially inhibited by tamoxifen. In medium containing serum, the growth of only the MCF 7/5-23 cells was significantly inhibited by the IGF-1R monoclonal antibody, alphaIR-3. The detection of E2-induced expression of IGF-2 using RT-PCR was demonstrated in the MCF 7/5-23 cells. These experiments indicate that E2 may sensitize tamoxifen-resistant MCF 7/5-23 cells to the growth stimulatory actions of IGF-2 via up-regulation of the IGF-1R and describes a cell-survival mechanism that may manifest itself as tamoxifen resistance.  (+info)

Retardation of cell proliferation after expression of p202 accompanies an increase in p21(WAF1/CIP1). (15/14784)

p202 is an IFN-inducible, primarily nuclear, phosphoprotein (52-kDa) whose constitutive overexpression in transfected cells inhibits colony formation. To investigate the molecular mechanism(s) by which expression of p202 protein impairs colony formation, we established stable cell lines that inducibly express p202. Using this cell model, we demonstrate that the induced expression of p202 in asynchronous cultures of these cells was accompanied by: (a) an increase in steady-state levels of p21(WAF1/CIP1/SDI1) (p21) mRNA and protein; (b) a decrease in Cdk2 protein kinase activity; and (c) an increase in the functional form of retinoblastoma protein (pRb). Transient transfection of a p202-encoding plasmid in Saos-2 cells, which do not harbor a wild-type p53 protein, resulted in an increase in p21 protein, which indicated that p202 could regulate expression of p21 protein independent of p53 protein. Moreover, we demonstrate that expression of p202 in these cells increased cell doubling time without accumulation of cells in a particular phase of the cell cycle. Taken together, these results are consistent with the possibility that p202 protein contributes to the cell growth retardation activity of the IFNs, at least in part, by modulating p21 protein levels.  (+info)

The tail domain of lamin Dm0 binds histones H2A and H2B. (16/14784)

In multicellular organisms, the higher order organization of chromatin during interphase and the reassembly of the nuclear envelope during mitosis are thought to involve an interaction between the nuclear lamina and chromatin. The nuclear distribution of lamins and of peripheral chromatin is highly correlated in vivo, and lamins bind specifically to chromatin in vitro. Deletion mutants of Drosophila lamin Dm0 were expressed to map regions of the protein that are required for its binding to chromosomes. The binding activity requires two regions in the lamin Dm0 tail domain. The apparent Kd of binding of the lamin Dm0 tail domain was found to be approximately 1 microM. Chromatin subfractions were examined to search for possible target molecules for the binding of lamin Dm0. Isolated polynucleosomes, nucleosomes, histone octamer, histone H2A/H2B dimer, and histones H2A or H2B displaced the binding of lamin Dm0 tail to chromosomes. This displacement was specific, because polyamines or proteins such as histones H1, H3, or H4 did not displace the binding of the lamin Dm0 tail to chromosomes. In addition, DNA sequences, including M/SARs, did not interfere with the binding of lamin Dm0 tail domain to chromosomes. Taken together, these results suggest that the interaction between the tail domain of lamin Dm0 and histones H2A and H2B may mediate the attachment of the nuclear lamina to chromosomes in vivo.  (+info)