The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. (1/1492)

The MLL gene from human chromosome 11q23 is involved in >30 different chromosomal translocations resulting in a plethora of different MLL fusion proteins. Each of these tends to associate with a specific leukaemia type, for example, MLL-AF9 is found mainly in acute myeloid leukaemia. We have studied the role of the Mll-AF9 gene fusion made in mouse embryonic stem cells by an homologous recombination knock-in. Acute leukaemias developed in heterozygous mice carrying this fusion as well as in chimeric mice. As with human chromosomal translocation t(9;11), the majority of cases were acute myeloid leukaemias (AMLs) involving immature myeloblasts, but a minority were acute lymphoblastic leukaemia. The AMLs were preceded by effects on haematopoietic differentiation involving a myeloproliferation resulting in accumulation of Mac-1/Gr-1 double-positive mature myeloid cells in bone marrow as early as 6 days after birth. Therefore, non-malignant expansion of myeloid precursors is the first stage of Mll-AF9-mediated leukaemia followed by accumulation of malignant cells in bone marrow and other tissues. Thus, the late onset of overt tumours suggests that secondary tumorigenic mutations are necessary for malignancy associated with MLL-AF9 gene fusion and that myeloproliferation provides the pool of cells in which such events can occur.  (+info)

Tic22 is targeted to the intermembrane space of chloroplasts by a novel pathway. (2/1492)

Tic22 previously was identified as a component of the general import machinery that functions in the import of nuclear-encoded proteins into the chloroplast. Tic22 is peripherally associated with the outer face of the inner chloroplast envelope membrane, making it the first known resident of the intermembrane space of the envelope. We have investigated the import of Tic22 into isolated chloroplasts to define the requirements for targeting of proteins to the intermembrane space. Tic22 is nuclear-endoded and synthesized as a preprotein with a 50-amino acid N-terminal presequence. The analysis of deletion mutants and chimerical proteins indicates that the precursor of Tic22 (preTic22) presequence is necessary and sufficient for targeting to the intermembrane space. Import of preTic22 was stimulated by ATP and required the presence of protease-sensitive components on the chloroplast surface. PreTic22 import was not competed by an excess of an authentic stromal preprotein, indicating that targeting to the intermembrane space does not involve the general import pathway utilized by stromal preproteins. On the basis of these observations, we conclude that preTic22 is targeted to the intermembrane space of chloroplasts by a novel import pathway that is distinct from known pathways that target proteins to other chloroplast subcompartments.  (+info)

A biochemical genomics approach for identifying genes by the activity of their products. (3/1492)

For the identification of yeast genes specifying biochemical activities, a genomic strategy that is rapid, sensitive, and widely applicable was developed with an array of 6144 individual yeast strains, each containing a different yeast open reading frame (ORF) fused to glutathione S-transferase (GST). For the identification of ORF-associated activities, strains were grown in defined pools, and GST-ORFs were purified. Then, pools were assayed for activities, and active pools were deconvoluted to identify the source strains. Three previously unknown ORF-associated activities were identified with this strategy: a cyclic phosphodiesterase that acts on adenosine diphosphate-ribose 1"-2" cyclic phosphate (Appr>p), an Appr-1"-p-processing activity, and a cytochrome c methyltransferase.  (+info)

Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. (4/1492)

Control of cell identity during development is specified in large part by the unique expression patterns of multiple homeobox-containing (Hox) genes in specific segments of an embryo. Trithorax and Polycomb-group (Trx-G and Pc-G) proteins in Drosophila maintain Hox expression or repression, respectively. Mixed lineage leukemia (MLL) is frequently involved in chromosomal translocations associated with acute leukemia and is the one established mammalian homologue of Trx. Bmi-1 was first identified as a collaborator in c-myc-induced murine lymphomagenesis and is homologous to the Drosophila Pc-G member Posterior sex combs. Here, we note the axial-skeletal transformations and altered Hox expression patterns of Mll-deficient and Bmi-1-deficient mice were normalized when both Mll and Bmi-1 were deleted, demonstrating their antagonistic role in determining segmental identity. Embryonic fibroblasts from Mll-deficient compared with Bmi-1-deficient mice demonstrate reciprocal regulation of Hox genes as well as an integrated Hoxc8-lacZ reporter construct. Reexpression of MLL was able to overcome repression, rescuing expression of Hoxc8-lacZ in Mll-deficient cells. Consistent with this, MLL and BMI-I display discrete subnuclear colocalization. Although Drosophila Pc-G and Trx-G members have been shown to maintain a previously established transcriptional pattern, we demonstrate that MLL can also dynamically regulate a target Hox gene.  (+info)

Rubisco small and large subunit N-methyltransferases. Bi- and mono-functional methyltransferases that methylate the small and large subunits of Rubisco. (5/1492)

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)is methylated at the alpha-amino group of the N-terminal methionine of the processed form of the small subunit (SS), and at the epsilon-amino group of lysine-14 of the large subunit (LS) in some species. The Rubisco LS methyltransferase (LSMT) gene has been cloned and expressed from pea and specifically methylates lysine-14 of the LS of Rubisco. We determine here that both pea and tobacco Rubisco LSMT also exhibit (alpha)N-methyltransferase activity toward the SS of Rubisco, suggesting that a single gene product can produce a bifunctional protein methyltransferase capable of catalyzing both (alpha)N-methylation of the SS and (epsilon)N-methylation of the LS. A homologue of the Rubisco LSMT gene (rbcMT-S) has also been identified in spinach that is closely related to Rubisco LSMT sequences from pea and tobacco. Two mRNAs are produced from rbcMT-S, and both long and short forms of the spinach cDNAs were expressed in Escherichia coli cells and shown to catalyze methylation of the alpha-amino group of the N-terminal methionine of the SS of Rubisco. Thus, the absence of lysine-14 methylation in species like spinach is apparently a consequence of a monofunctional protein methyltransferase incapable of methylating Lys-14, with activity limited to methylation of the SS.  (+info)

Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. (6/1492)

Studies into posttranslational modifications of histones, notably acetylation, have yielded important insights into the dynamic nature of chromatin structure and its fundamental role in gene expression. The roles of other covalent histone modifications remain poorly understood. To gain further insight into histone methylation, we investigated its occurrence and pattern of site utilization in Tetrahymena, yeast, and human HeLa cells. In Tetrahymena, transcriptionally active macronuclei, but not transcriptionally inert micronuclei, contain a robust histone methyltransferase activity that is highly selective for H3. Microsequence analyses of H3 from Tetrahymena, yeast, and HeLa cells indicate that lysine 4 is a highly conserved site of methylation, which to date, is the major site detected in Tetrahymena and yeast. These data document a nonrandom pattern of H3 methylation that does not overlap with known acetylation sites in this histone. In as much as H3 methylation at lysine 4 appears to be specific to macronuclei in Tetrahymena, we suggest that this modification pattern plays a facilitatory role in the transcription process in a manner that remains to be determined. Consistent with this possibility, H3 methylation in yeast occurs preferentially in a subpopulation of H3 that is preferentially acetylated.  (+info)

Candidate tumor suppressor RIZ is frequently involved in colorectal carcinogenesis. (7/1492)

The distal portion of chromosome 1p is one of the most commonly affected regions in human cancer. In this study of hereditary and sporadic colorectal cancer, a region of frequent deletion was identified at 32.2 centimorgans from 1ptel. Deletion breakpoints clustered in the vicinity of or inside the gene RIZ, which encodes a retinoblastoma protein-interacting zinc finger protein. Sequence analysis revealed frequent frameshift mutations of the RIZ gene. The mutations consisted of 1- or 2-bp deletions of a coding (A)(8) or (A)(9) tract and were confined to microsatellite-unstable colorectal tumors, being present in 9 of 24 (37.5%) primary tumors and in 6 of 11 (54.5%) cell lines; in 2 cell lines the mutation was homozygous/hemizygous. The mutations apparently were selected clonally in tumorigenesis, because similar poly(A) tracts in other genes were not affected. Two alternative products of the gene exist, RIZ1, which contains a PR (PRDI-BF1-RIZ1) domain implicated in tumor suppressor function, and RIZ2, which is lacking this motif. Furthermore, the C-terminal region, which contains the poly(A) tracts, includes a PR-binding motif, possibly mediating interactions with other proteins or with RIZ itself (oligomerization). Four of eleven microsatellite-unstable colorectal cancer cell lines, three of which had frameshifts, showed reduced or absent mRNA expression of RIZ1. In a cell line that is homozygous/hemizygous for the typical frameshift mutation, immunoblotting showed truncated RIZ protein, whereas adenovirus-mediated RIZ1 expression caused G(2)/M arrest and apoptosis. We propose that RIZ is a target of the observed 1p alterations, with impairment of the PR domain-mediated function through either frameshift mutation or genomic deletion.  (+info)

Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. (8/1492)

Many different chromosomal translocations occur in man at chromosome 11q23 in acute leukaemias. Molecular analyses revealed that the MLL gene (also called ALL-1, HRX or HTRX) is broken by the translocations, causing fusion with genes from other chromosomes. The diversity of MLL fusion partners poses a dilemma about the function of the fusion proteins in tumour development. The consequence of MLL truncation and fusion has been analysed by joining exon 8 of Mll with the bacterial lacZ gene using homologous recombination in mouse embryonic stem cells. We show that this fusion is sufficient to cause embryonic stem cell-derived acute leukaemias in chimeric mice, and these tumours occur with long latency compared with those found in MLL-Af9 chimeric mice. These findings indicate that an MLL fusion protein can contribute to tumorigenesis, even if the fusion partner has no known pathogenic role. Thus, truncation and fusion of MLL can be sufficient for tumorigenesis, regardless of the fusion partner.  (+info)