Loading...
(1/2303) The amino-terminal C/H1 domain of CREB binding protein mediates zta transcriptional activation of latent Epstein-Barr virus.

Latent Epstein-Barr virus (EBV) is maintained as a nucleosome-covered episome that can be transcriptionally activated by overexpression of the viral immediate-early protein, Zta. We show here that reactivation of latent EBV by Zta can be significantly enhanced by coexpression of the cellular coactivators CREB binding protein (CBP) and p300. A stable complex containing both Zta and CBP could be isolated from lytically stimulated, but not latently infected RAJI nuclear extracts. Zta-mediated viral reactivation and transcriptional activation were both significantly inhibited by coexpression of the E1A 12S protein but not by an N-terminal deletion mutation of E1A (E1ADelta2-36), which fails to bind CBP. Zta bound directly to two related cysteine- and histidine-rich domains of CBP, referred to as C/H1 and C/H3. These domains both interacted specifically with the transcriptional activation domain of Zta in an electrophoretic mobility shift assay. Interestingly, we found that the C/H3 domain was a potent dominant negative inhibitor of Zta transcriptional activation function. In contrast, an amino-terminal fragment containing the C/H1 domain was sufficient for coactivation of Zta transcription and viral reactivation function. Thus, CBP can stimulate the transcription of latent EBV in a histone acetyltransferase-independent manner mediated by the CBP amino-terminal C/H1-containing domain. We propose that CBP may regulate aspects of EBV latency and reactivation by integrating cellular signals mediated by competitive interactions between C/H1, C/H3, and the Zta activation domain.  (+info)

(2/2303) The histone acetylase PCAF is a phorbol-ester-inducible coactivator of the IRF family that confers enhanced interferon responsiveness.

Transcription factors of the interferon regulatory factor (IRF) family bind to the type I interferon (IFN)-responsive element (ISRE) and activate transcription from IFN-inducible genes. To identify cofactors that associate with IRF proteins, DNA affinity binding assays were performed with nuclear extracts prepared from tissue culture cells. The results demonstrated that the endogenous IRFs bound to the ISRE are complexed with the histone acetylases, PCAF, GCN5, and p300/CREB binding protein and that histone acetylase activities are accumulated on the IRF-ISRE complexes. By testing recombinant proteins, we show that PCAF directly binds to some but not all members of the IRF family through distinct domains of the two proteins. This interaction was functionally significant, since transfection of PCAF strongly enhanced IRF-1- and IRF-2-dependent promoter activities. Further studies showed that expression of PCAF and other histone acetylases was markedly induced in U937 cells upon phorbol ester treatment, which led to increased recruitment of PCAF to the IRF-ISRE complexes. Coinciding with the induction of histone acetylases, phorbol ester markedly enhanced IFN-alpha-stimulated gene expression in U937 cells. Supporting the role for PCAF in conferring IFN responsiveness, transfection of PCAF into U937 cells led to a large increase in IFN-alpha-inducible promoter activity. These results demonstrate that PCAF is a phorbol ester-inducible coactivator of the IRF proteins which contributes to the establishment of type I IFN responsiveness.  (+info)

(3/2303) A novel H2A/H4 nucleosomal histone acetyltransferase in Tetrahymena thermophila.

Recently, we reported the identification of a 55-kDa polypeptide (p55) from Tetrahymena macronuclei as a catalytic subunit of a transcription-associated histone acetyltransferase (HAT A). Extensive homology between p55 and Gcn5p, a component of the SAGA and ADA transcriptional coactivator complexes in budding yeast, suggests an immediate link between the regulation of chromatin structure and transcriptional output. Here we report the characterization of a second transcription-associated HAT activity from Tetrahymena macronuclei. This novel activity is distinct from complexes containing p55 and putative ciliate SAGA and ADA components and shares several characteristics with NuA4 (for nucleosomal H2A/H4), a 1.8-MDa, Gcn5p-independent HAT complex recently described in yeast. A key feature of both the NuA4 and Tetrahymena activities is their acetylation site specificity for lysines 5, 8, 12, and 16 of H4 and lysines 5 and 9 of H2A in nucleosomal substrates, patterns that are distinct from those of known Gcn5p family members. Moreover, like NuA4, the Tetrahymena activity is capable of activating transcription from nucleosomal templates in vitro in an acetyl coenzyme A-dependent fashion. Unlike NuA4, however, sucrose gradient analyses of the ciliate enzyme, following sequential denaturation and renaturation, estimate the molecular size of the catalytically active subunit to be approximately 80 kDa, consistent with the notion that a single polypeptide or a stable subcomplex is sufficient for this H2A/H4 nucleosomal HAT activity. Together, these data document the importance of this novel HAT activity for transcriptional activation from chromatin templates and suggest that a second catalytic HAT subunit, in addition to p55/Gcn5p, is conserved between yeast and Tetrahymena.  (+info)

(4/2303) Virus infection leads to localized hyperacetylation of histones H3 and H4 at the IFN-beta promoter.

Transcriptional activation of the human interferon-beta (IFN-beta) gene by virus infection requires the assembly of a higher order nucleoprotein complex, the enhanceosome, which consists of the transcriptional activators NF-kappa B (p50/p65), ATF-2/c-jun, IRF-3 and IRF-7, architectural protein HMGI(Y), and the coactivators p300 and CBP. In this report, we show that virus infection of cells results in a dramatic hyperacetylation of histones H3 and H4 that is localized to the IFN-beta promoter. Furthermore, expressing a truncated version of IRF-3, which lacks a p300/CBP interaction domain, suppresses both histone hyperacetylation and activation of the IFN-beta gene. Thus, coactivator-mediated localized hyperacetylation of histones may play a crucial role in inducible gene expression.  (+info)

(5/2303) A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity.

Nucleosomal histone modification is believed to be a critical step in the activation of RNA polymerase II-dependent transcription. p300/CBP and PCAF histone acetyltransferases (HATs) are coactivators for several transcription factors, including nuclear hormone receptors, p53, and Stat1alpha, and participate in transcription by forming an activation complex and by promoting histone acetylation. The adenoviral E1A oncoprotein represses transcriptional signaling by binding to p300/CBP and displacing PCAF and p/CIP proteins from the complex. Here, we show that E1A directly represses the HAT activity of both p300/CBP and PCAF in vitro and p300-dependent transcription in vivo. Additionally, E1A inhibits nucleosomal histone modifications by the PCAF complex and blocks p53 acetylation. These results demonstrate the modulation of HAT activity as a novel mechanism of transcriptional regulation.  (+info)

(6/2303) Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A.

Histone acetyltransferases (HAT) play a critical role in transcriptional control by relieving repressive effects of chromatin, and yet how HATs themselves are regulated remains largely unknown. Here, it is shown that Twist directly binds two independent HAT domains of acetyltransferases, p300 and p300/CBP-associated factor (PCAF), and directly regulates their HAT activities. The N terminus of Twist is a primary domain interacting with both acetyltransferases, and the same domain is required for inhibition of p300-dependent transcription by Twist. Adenovirus E1A protein mimics the effects of Twist by inhibiting the HAT activities of p300 and PCAF. These findings establish a cogent argument for considering the HAT domains as a direct target for acetyltransferase regulation by both a cellular transcription factor and a viral oncoprotein.  (+info)

(7/2303) Expanded lysine acetylation specificity of Gcn5 in native complexes.

The coactivator/adaptor protein Gcn5 is a conserved histone acetyltransferase, which functions as the catalytic subunit in multiple yeast transcriptional regulatory complexes. The ability of Gcn5 to acetylate nucleosomal histones is significantly reduced relative to its activity on free histones, where it predominantly modifies histone H3 at lysine 14. However, the association of Gcn5 in multisubunit complexes potentiates its nucleosomal histone acetyltransferase activity. Here, we show that the association of Gcn5 with other proteins in two native yeast complexes, Ada and SAGA (Spt-Ada-Gcn5-acetyltransferase), directly confers upon Gcn5 the ability to acetylate an expanded set of lysines on H3. Furthermore Ada and SAGA have overlapping, yet distinct, patterns of acetylation, suggesting that the association of specific subunits determines site specificity.  (+info)

(8/2303) Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.

To screen pancreatic carcinomas for chromosomal aberrations we have applied molecular cytogenetic techniques, including fluorescent in situ hybridization, comparative genomic hybridization, and spectral karyotyping to a series of nine established cell lines. Comparative genomic hybridization revealed recurring chromosomal gains on chromosome arms 3q, 5p, 7p, 8q, 12p, and 20q. Chromosome losses were mapped to chromosome arms 8p, 9p, 17p, 18q, 19p, and chromosome 21. The comparison with comparative genomic hybridization data from primary pancreatic tumors indicates that a specific pattern of chromosomal copy number changes is maintained in cell culture. Metaphase chromosomes from six cell lines were analyzed by spectral karyotyping, a technique that allows one to visualize all chromosomes simultaneously in different colors. Spectral karyotyping identified multiple chromosomal rearrangements, the majority of which were unbalanced. No recurring reciprocal translocation was detected. Cytogenetic aberrations were confirmed using fluorescent in situ hybridization with probes for the MDR gene and the tumor suppressor genes p16 and DCC. Copy number increases on chromosome 20q were validated with a probe specific for the nuclear receptor coactivator AIB1 that maps to chromosome 20q12. Amplification of this gene was identified in six of nine pancreatic cancer cell lines and correlated with increased expression.  (+info)