Loading...
(1/5762) Donor MHC and adhesion molecules in transplant arteriosclerosis.

Transplant-associated arteriosclerosis remains an obstacle to long-term graft survival. To determine the contribution to transplant arteriosclerosis of MHC and adhesion molecules from cells of the donor vasculature, we allografted carotid artery loops from six mutant mouse strains into immunocompetent CBA/CaJ recipients. The donor mice were deficient in either MHC I molecules or MHC II molecules, both MHC I and MHC II molecules, the adhesion molecule P-selectin, intercellular adhesion molecule (ICAM)-1, or both P-selectin and ICAM-1. Donor arteries in which ICAM-1, MHC II, or both MHC I and MHC II were absent showed reductions in neointima formation of 52%, 33%, and 38%, respectively, due primarily to a reduction in smooth muscle cell (SMC) accumulation. In P-selectin-deficient donor arteries, neointima formation did not differ from that in controls. In donor arteries lacking both P-selectin and ICAM-1, the size of the neointima was similar to that in those lacking ICAM-1 alone. In contrast, neointima formation increased by 52% in MHC I-deficient donor arteries. The number of CD4-positive T cells increased by 2.8-fold in MHC I-deficient arteries, and that of alpha-actin-positive SMCs by twofold. These observations indicate that ICAM-1 and MHC II molecules expressed in the donor vessel wall may promote transplant-associated arteriosclerosis. MHC I molecules expressed in the donor may have a protective effect.  (+info)

(2/5762) Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S.

The lysosomal cysteine proteases cathepsins S and L play crucial roles in the degradation of the invariant chain during maturation of MHC class II molecules and antigen processing. The p41 form of the invariant chain includes a fragment which specifically inhibits cathepsin L but not S. The crystal structure of the p41 fragment, a homologue of the thyroglobulin type-1 domains, has been determined at 2.0 A resolution in complex with cathepsin L. The structure of the p41 fragment demonstrates a novel fold, consisting of two subdomains, each stabilized by disulfide bridges. The first subdomain is an alpha-helix-beta-strand arrangement, whereas the second subdomain has a predominantly beta-strand arrangement. The wedge shape and three-loop arrangement of the p41 fragment bound to the active site cleft of cathepsin L are reminiscent of the inhibitory edge of cystatins, thus demonstrating the first example of convergent evolution observed in cysteine protease inhibitors. However, the different fold of the p41 fragment results in additional contacts with the top of the R-domain of the enzymes, which defines the specificity-determining S2 and S1' substrate-binding sites. This enables inhibitors based on the thyroglobulin type-1 domain fold, in contrast to the rather non-selective cystatins, to exhibit specificity for their target enzymes.  (+info)

(3/5762) Thymic selection by a single MHC/peptide ligand: autoreactive T cells are low-affinity cells.

In H2-M- mice, the presence of a single peptide, CLIP, bound to MHC class II molecules generates a diverse repertoire of CD4+ cells. In these mice, typical self-peptides are not bound to class II molecules, with the result that a very high proportion of H2-M- CD4+ cells are responsive to the various peptides displayed on normal MHC-compatible APC. We show here, however, that such "self" reactivity is controlled by low-affinity CD4+ cells. These cells give spectacularly high proliferative responses but are virtually unreactive in certain other assays, e.g., skin graft rejection; responses to MHC alloantigens, by contrast, are intense in all assays. Possible explanations for why thymic selection directed to a single peptide curtails self specificity without affecting alloreactivity are discussed.  (+info)

(4/5762) Human granulocytic ehrlichiosis agent and Ehrlichia chaffeensis reside in different cytoplasmic compartments in HL-60 cells.

The human granulocytic ehrlichiosis (HGE) agent resides and multiplies exclusively in cytoplasmic vacuoles of granulocytes. Double immunofluorescence labeling was used to characterize the nature of the HGE agent replicative inclusions and to compare them with inclusions containing the human monocytic ehrlichia, Ehrlichia chaffeensis, in HL-60 cells. Although both Ehrlichia spp. can coinfect HL-60 cells, they resided in separate inclusions. Inclusions of both Ehrlichia spp. were not labeled with either anti-lysosome-associated membrane protein 1 or anti-CD63. Accumulation of myeloperoxidase-positive granules were seen around HGE agent inclusions but not around E. chaffeensis inclusions. 3-(2, 4-Dinitroanilino)-3'-amino-N-methyldipropylamine and acridine orange were not localized to either inclusion type. Vacuolar-type H+-ATPase was not colocalized with HGE agent inclusions but was weakly colocalized with E. chaffeensis inclusions. E. chaffeensis inclusions were labeled with the transferrin receptor, early endosomal antigen 1, and rab5, but HGE agent inclusions were not. Some HGE agent and E. chaffeensis inclusions colocalized with major histocompatibility complex class I and II antigens. These two inclusions were not labeled for annexins I, II, IV, and VI; alpha-adaptin; clathrin heavy chain; or beta-coatomer protein. Vesicle-associated membrane protein 2 colocalized to both inclusions. The cation-independent mannose 6-phosphate receptor was not colocalized with either inclusion type. Endogenously synthesized sphingomyelin, from C6-NBD-ceramide, was not incorporated into either inclusion type. Brefeldin A did not affect the growth of either Ehrlichia sp. in HL-60 cells. These results suggest that the HGE agent resides in inclusions which are neither early nor late endosomes and does not fuse with lysosomes or Golgi-derived vesicles, while E. chaffeensis resides in an early endosomal compartment which accumulates the transferrin receptor.  (+info)

(5/5762) Associations of anti-beta2-glycoprotein I autoantibodies with HLA class II alleles in three ethnic groups.

OBJECTIVE: To determine any HLA associations with anti-beta2-glycoprotein I (anti-beta2GPI) antibodies in a large, retrospectively studied, multiethnic group of 262 patients with primary antiphospholipid antibody syndrome (APS), systemic lupus erythematosus (SLE), or another connective tissue disease. METHODS: Anti-beta2GPI antibodies were detected in sera using an enzyme-linked immunosorbent assay. HLA class II alleles (DRB1, DQA1, and DQB1) were determined by DNA oligotyping. RESULTS: The HLA-DQB1*0302 (DQ8) allele, typically carried on HLA-DR4 haplotypes, was associated with anti-beta2GPI when compared with both anti-beta2GPI-negative SLE patients and ethnically matched normal controls, especially in Mexican Americans and, to a lesser extent, in whites. Similarly, when ethnic groups were combined, HLA-DQB1*0302, as well as HLA-DQB1*03 alleles overall (DQB1*0301, *0302, and *0303), were strongly correlated with anti-beta2GPI antibodies. The HLA-DR6 (DR13) haplotype DRB1*1302; DQB1*0604/5 was also significantly increased, primarily in blacks. HLA-DR7 was not significantly increased in any of these 3 ethnic groups, and HLA-DR53 (DRB4*0101) was increased in Mexican Americans only. CONCLUSION: Certain HLA class II haplotypes genetically influence the expression of antibodies to beta2GPI, an important autoimmune response in the APS, but there are variations in HLA associations among different ethnic groups.  (+info)

(6/5762) Soluble HLA class I, HLA class II, and Fas ligand in blood components: a possible key to explain the immunomodulatory effects of allogeneic blood transfusions.

The immunomodulatory effect of allogeneic blood transfusions (ABT) has been known for many years. However, a complete understanding of the effects of ABT on the recipient's immune system has remained elusive. Soluble HLA class I (sHLA-I), HLA class II (sHLA-II), and Fas ligand (sFasL) molecules may play immunoregulatory roles. We determined by double-determinant immunoenzymatic assay (DDIA) sHLA-I, sHLA-II, and sFasL concentrations in different blood components. sHLA-I and sFasL levels in red blood cells (RBCs) stored for up to 30 days and in random-donor platelets are significantly (P <.001) higher than in other blood components and their amount is proportionate to the number of residual donor leukocytes and to the length of storage. Blood components with high sHLA-I and sFasL levels play immunoregulatory roles in vitro as in allogeneic mixed lymphocyte responses (MLR) and antigen-specific cytotoxic T-cell (CTL) activity, and induce apoptosis in Fas-positive cells. These data suggest that soluble molecules in blood components are functional. If these results are paralleled in vivo, they should be taken into account in transfusion practice. Blood components that can cause immunosuppression should be chosen to induce transplantation tolerance, whereas blood components that lack immunosuppressive effects should be preferred to reduce the risk of postoperative complications and cancer recurrence.  (+info)

(7/5762) Expanded tumor-reactive CD4+ T-cell responses to human cancers induced by secondary anti-CD3/anti-CD28 activation.

Generation of tumor-reactive T cells in large numbers ex vivo is a requisite step in the adoptive immunotherapy of patients. We examined the immune responses of T cells derived from tumor vaccine-primed lymph nodes activated with anti-CD3 alone and with an anti-CD3/anti-CD28 combination. Nylon wool-purified CD3+ cells were isolated from vaccine-primed lymph nodes obtained from melanoma, renal cell, and head and neck cancer patients. In the absence of antigen-presenting cells, activation with anti-CD3/anti-CD28 greatly enhanced subsequent T-cell expansion in interleukin 2 (>100-fold), compared to anti-CD3 alone. CD4+ T cells were preferentially stimulated. In four of eight patients, we found evidence of CD4+ cellular responses to autologous tumors by cytokine release assays. Positively selected CD4+ cells activated with anti-CD3/anti-CD28 released greater amounts of cytokine (IFN-gamma and granulocyte macrophage colony-stimulating factor) in response to autologous tumors compared to cells activated by anti-CD3 alone. The CD4+ reactivity was MHC class II restricted and appeared to be associated with the expression of class II molecules on the vaccinating tumor cells. The CD4+ T-cell responses to class II-restricted tumor-associated antigens in patients with renal cell cancers represent unique findings.  (+info)

(8/5762) Cytotoxicity is mandatory for CD8(+) T cell-mediated contact hypersensitivity.

Contact hypersensitivity (CHS) is a T cell-mediated skin inflammation induced by epicutaneous exposure to haptens in sensitized individuals. We have previously reported that CHS to dinitrofluorobenzene in mice is mediated by major histocompatibility complex (MHC) class I-restricted CD8(+) T cells. In this study, we show that CD8(+) T cells mediate the skin inflammation through their cytotoxic activity. The contribution of specific cytotoxic T lymphocytes (CTLs) to the CHS reaction was examined both in vivo and in vitro, using mice deficient in perforin and/or Fas/Fas ligand (FasL) pathways involved in cytotoxicity. Mice double deficient in perforin and FasL were able to develop hapten-specific CD8(+) T cells in the lymphoid organs but did not show CHS reaction. However, they did not generate hapten-specific CTLs, demonstrating that the CHS reaction is dependent on cytotoxic activity. In contrast, Fas-deficient lpr mice, FasL-deficient gld mice, and perforin-deficient mice developed a normal CHS reaction and were able to generate hapten-specific CTLs, suggesting that CHS requires either the Fas/FasL or the perforin pathway. This was confirmed by in vitro studies showing that the hapten-specific CTL activity was exclusively mediated by MHC class I-restricted CD8(+) T cells which could use either the perforin or the Fas/FasL pathway for their lytic activity. Thus, cytotoxic CD8(+) T cells, commonly implicated in the host defence against tumors and viral infections, could also mediate harmful delayed-type hypersensitivity reactions.  (+info)