Ciproxifan, a histamine H3-receptor antagonist/inverse agonist, potentiates neurochemical and behavioral effects of haloperidol in the rat. (65/519)

By using double in situ hybridization performed with proenkephalin and H3-receptor riboprobes on the same sections from rat brain, we show that histamine H3 receptors are expressed within striatopallidal neurons of the indirect movement pathway. The majority ( approximately 70%) of striatal enkephalin neurons express H3-receptor mRNAs. This important degree of coexpression of proenkephalin and H3-receptor mRNAs prompted us to explore the effect of H3-receptor ligands on the regulation of enkephalin mRNA expression in the striatum. Acute administration of ciproxifan, a H3-receptor antagonist/inverse agonist, did not modify the expression of the neuropeptide by itself but strongly increased the upregulation of its expression induced by haloperidol. This potentiation (1) was suppressed by the administration of (R)-alpha-methylhistamine, a H3-receptor agonist, (2) occurred both in the caudate-putamen and nucleus accumbens, and (3) was also observed with a similar pattern on c-fos and neurotensin mRNA expression. Similarly, whereas it was devoid of any motor effect when used alone, ciproxifan strongly potentiated haloperidol-induced locomotor hypoactivity and catalepsy, two behaviors in which striatal neurons are involved. The strong H3-receptor mRNA expression in enkephalin neurons suggests that the synergistic neurochemical and motor effects of ciproxifan and haloperidol result from direct H3/D2-receptor interactions, leading to an enhanced activation of striatopallidal neurons of the indirect movement pathway. The potentiation of the effects of haloperidol by ciproxifan strengthens the potential interest of H3-receptor antagonists/inverse agonists to improve the symptomatic treatment of schizophrenia.  (+info)

Cosensitivity of vagal mucosal afferents to histamine and 5-HT in the rat jejunum. (66/519)

A complex sensitivity of afferent nerves in the mesentery of the rat jejunum to systemic administration of histamine has recently been demonstrated. In the present study, we aimed to characterize subpopulations of mesenteric afferents that mediate this afferent nerve response. Multiunit afferent discharge was recorded from mesenteric nerves supplying the proximal jejunum in anesthetized rats. The majority of mesenteric bundles (84%) exhibited biphasic responses to histamine (8 micromol/kg), and these bundles also responded to 2-methyl-5-HT (2m5HT). In contrast, monophasic responses lacked a short-latency component, and these bundles failed to respond to 2m5HT. Single-unit analysis revealed a population of afferents that possessed cosensitivity for 2m5HT and histamine. This population of afferents was absent in chronically vagotomized animals, whereas mucosal anesthesia with luminal lidocaine reversibly converted the biphasic profile to a monophasic one. Ondansetron (500 microg/kg) blocked the response to 2m5HT with no effect on the profile of the histamine response, whereas pyrilamine (5 mg/kg) blocked the histamine response without affecting the response to 2m5HT. We conclude that histamine-sensitive afferents exist in the rat proximal jejunum that also respond to 5-HT via the 5-HT3 receptor. These fibers appear to be vagal afferents originating in the intestinal mucosa and may be involved in the organization of mast cell-mediated responses.  (+info)

Enhancement of neutrophil infiltration in histidine decarboxylase-deficient mice. (67/519)

The roles of histamine in the anaphylactic increase in vascular permeability and leucocyte infiltration were analysed in an air pouch-type allergic inflammation model in histidine decarboxylase-deficient (HDC-/-) mice and wild-type mice. In the immunized wild-type mice, histamine content in the pouch fluid and vascular permeability in the anaphylaxis phase were increased by injection of the antigen solution into the air pouch. However, in the immunized HDC-/- mice, the antigen challenge did not increase histamine content in the pouch fluid and vascular permeability in the anaphylaxis phase. Number of leucocytes (more than 83% are neutrophils) in the pouch fluid 4-24 hr after the antigen challenge in the HDC-/- mice was significantly higher than that in the wild-type mice. Simultaneous injection of histamine with the antigen solution into the air pouch of the immunized HDC-/- mice reduced the antigen-induced leucocyte infiltration at 4 hr. Simultaneous injection of the H2 antagonist cimetidine but not the H1 antagonist pyrilamine with the antigen solution into the air pouch of the immunized wild-type mice further increased leucocyte infiltration at 4 hr. The levels of macrophage inflammatory protein-2 at 2 hr and of tumour necrosis factor-alpha at 4 hr in the pouch fluid of the HDC-/- mice were significantly higher than those of the wild-type mice. These findings indicate that histamine plays significant roles not only in the anaphylactic increase in vascular permeability via H1 receptors but also in the negative regulation of neutrophil infiltration via H2 receptors in allergic inflammation.  (+info)

Neuroimmune interactions in guinea pig stomach and small intestine. (68/519)

Enteric neuroimmune interactions in gastrointestinal hypersensitivity responses involve antigen detection by mast cells, mast cell degranulation, release of chemical mediators, and modulatory actions of the mediators on the enteric nervous system (ENS). Electrophysiological methods were used to investigate electrical and synaptic behavior of neurons in the stomach and small intestine during exposure to beta-lactoglobulin in guinea pigs sensitized to cow's milk. Application of beta-lactoglobulin to sensitized preparations depolarized the membrane potential and increased neuronal excitability in small intestinal neurons but not in gastric neurons. Effects on membrane potential and excitability in the small intestine were suppressed by the mast cell stabilizing drug ketotifen, the histamine H(2) receptor antagonist cimetidine, the cyclooxygenase inhibitor piroxicam, and the 5-lipoxygenase inhibitor caffeic acid. Unlike small intestinal ganglion cells, gastric myenteric neurons did not respond to histamine applied exogenously. Antigenic exposure suppressed noradrenergic inhibitory neurotransmission in the small intestinal submucosal plexus. The histamine H(3) receptor antagonist thioperamide and piroxicam, but not caffeic acid, prevented the allergic suppression of noradrenergic inhibitory neurotransmission. Antigenic stimulation of neuronal excitability and suppression of synaptic transmission occurred only in milk-sensitized animals. Results suggest that signaling between mast cells and the ENS underlies intestinal, but not gastric, anaphylactic responses associated with food allergies. Histamine, prostaglandins, and leukotrienes are paracrine signals in the communication pathway from mast cells to the small intestinal ENS.  (+info)

Activation of a PTX-insensitive G protein is involved in histamine-induced recombinant M-channel modulation. (69/519)

The M-type potassium current (I(M)) plays a dominant role in regulating membrane excitability and is modulated by many neurotransmitters. However, except in the case of bradykinin, the signal transduction pathways involved in M-channel modulation have not been fully elucidated. The channels underlying I(M) are produced by the coassembly of KCNQ2 and KCNQ3 channel subunits and can be expressed in heterologous systems where they can be modulated by several neurotransmitter receptors including histamine H(1) receptors. In HEK293T cells, histamine acting via transiently expressed H(1)R produced a strong inhibition of recombinant M-channels but had no overt effects on the voltage dependence or voltage range of I(M) activation. In addition, the modulation of I(M) by histamine was not voltage sensitive, whereas channel gating, particularly deactivation, was accelerated by histamine. Non-hydrolysable guanine nucleotide analogues (GDP-beta-S and GTP-gamma-S) and pertussis toxin (PTX) treatment demonstrated the involvement of a PTX-insensitive G protein in the signal transduction pathway mediating histamine-induced I(M) modulation. Abrogation of the histamine-induced modulation of I(M) by expression of a C-terminal construct of phospholipase C (PLC-beta1-ct), which buffers activated Galpha(q/11) subunits, implicates this G protein alpha subunit in the modulatory pathway. On the other hand, abrogation of the histamine-induced modulation of I(M) by expression of two constructs which buffer free betagamma subunits, transducin (Galphat) and a C-terminal construct of a G protein receptor kinase (MAS-GRK2-ct), implicates betagamma dimers in the modulatory pathway. These findings demonstrate that histamine modulates recombinant M-channels in HEK293T cells via a PTX-insensitive G protein, probably Galpha(q/11), in a similar manner to a number of other G protein-coupled receptors. However, histamine-induced I(M) modulation in HEK293T cells is novel in that betagamma subunits in addition to Galpha(q/11) subunits appear to be involved in the modulation of KCNQ2/3 channel currents.  (+info)

Targeted disruption of H3 receptors results in changes in brain histamine tone leading to an obese phenotype. (70/519)

Histamine is an aminergic neurotransmitter that is localized in the CNS and in peripheral tissues. To date, four histamine receptors have been identified, and the H3 receptor, which was recently cloned, is predominantly expressed in the CNS. The peripheral functions of histamine have been investigated intensively using available molecular and pharmacological tools, and the molecular identification of the H3 receptor opens up new possibilities for investigating the role of histamine in central tissues. To understand the biological function of the histamine presynaptic autoreceptor H3, we inactivated the receptor through homologous recombination. H3(-/-) mice manifest mild obese phenotypes that are characterized by increases in body weight, food intake, and adiposity and by reductions in energy expenditure. Consistent with these observations, homozygous null mice have insulin and leptin resistance, increased levels of plasma leptin and insulin, and decreased levels of histamine in the hypothalamic/thalamic region of their brains coupled with increased histamine turnover. The expression of UCP1 in brown adipose tissue and of UCP3 in brown adipose tissue, white adipose tissue, and skeletal muscle is decreased in H3(-/-) mutants, and the anorexigenic activity of thioperamide is not observed. These results suggest that neuronal histamine is a mediator of body-weight homeostasis and that neuronal histamine functions through H3 receptors in mice.  (+info)

Two novel and selective nonimidazole H3 receptor antagonists A-304121 and A-317920: II. In vivo behavioral and neurophysiological characterization. (71/519)

Pharmacological blockade of central histamine H3 receptors (H3Rs) enhances cognition in rodents and offers promise for the clinical treatment of neurological disorders. However, many previously characterized H3R antagonists are either not selective for H3Rs or have potentially significant tolerability issues. Here, we present in vivo behavioral and neurophysiological data for two novel and selective H3R antagonists with improved safety indices. Functional blockade of central H3Rs was first demonstrated for A-304121 [(4-(3-(4-((2R)-2-aminopropanoyl)-1-piperazinyl)propoxy)phenyl)cyclopropylmethano ne] (1 mg/kg) and A-317920 [N-((1R)-2-(4-(3-(4-(cyclopropylcarbonyl)phenoxy)propyl)-1-piperazinyl)-1-methyl- 2-oxo-ethyl)-2-furamide] (0.45 mg/kg) by significantly attenuating an acute dipsogenia response to the selective H3R agonist (R)-alpha-methylhistamine [(R)-alpha-MeHA]. Cognitive performance was improved in a five-trial rat pup avoidance test following administration of A-304121 (10 mg/kg) or A-317920 (3 mg/kg), with efficacy comparable with previously published observations for reference H3R antagonists thioperamide (10 mg/kg), ciproxifan (3 mg/kg), and GT-2331 [(1R,2R)-4-(2-(5,5-dimethylhex-1-ynyl)cyclopropyl)imidazole] (1 mg/kg). Social memory was also significantly enhanced in the adult rat with A-304121 (3, 10 mg/kg) and A-317920 (1, 3 mg/kg) at doses that produced no significant change in electroencephalogram slow-wave amplitude activity. Relative therapeutic indices (TIs) of 30 and 42 were estimated for A-304121 and A-317920, respectively, by comparing doses producing adverse effects in general observation studies with potency in inhibitory avoidance, which were superior to TIs of 8, 10, and 18 observed for the reference antagonists thioperamide, ciproxifan, and GT-2331, respectively. A-304121 and A-317920 represent a series of novel, H3R-selective piperazine amides that enhance cognition in vivo, which could offer advantages over existing H3R antagonists or cognition-enhancing agents.  (+info)

Two novel and selective nonimidazole histamine H3 receptor antagonists A-304121 and A-317920: I. In vitro pharmacological effects. (72/519)

Histamine H3 receptor (H3R) antagonists enhance neurotransmitter release and are being developed for the treatment of a variety of neurological and cognitive disorders. Many potent histamine H3R antagonists contain an imidazole moiety that limits receptor selectivity and the tolerability of this class of compounds. Here we present the in vitro pharmacological data for two novel piperazine amide ligands, A-304121 [4-(3-((2R)-2-aminopropanoyl-1-piperazinyl)propoxy)phenyl)cyclopropylmethanone] and A-317920 [N-((1R)-2-(4-(3-(4-(cyclopropylcarbonyl)phenoxy)propyl)-1-piperazinyl)-1-methyl- 2-oxo-ethyl-)-2-furamide], and compare them with the imidazole H3R antagonists ciproxifan, clobenpropit, and thioperamide. Both A-304121 and A-317920 bind potently to recombinant full-length rat H3R(pKi values = 8.6 and 9.2, respectively) but have lower potencies for binding the full-length human H3R (pKi values = 6.1 and 7.0, respectively). A-304121 and A-317920 are potent antagonists at rat H3R in reversing R-alpha-methylhistamine [(R)-alpha-MeHA] inhibition of forskolin-stimulated cAMP formation (pKb values = 8.0 and 9.1) but weak antagonists at human H3Rs in cyclase (pKb values = 6.0 and 6.3) and calcium mobilization (pKb values = 6.0 and 7.3) assays in cells co-expressing Galphaqi5-protein. Both compounds potently antagonize native H3Rs by blocking histamine inhibition of potassium-evoked [3H]histamine release from rat brain cortical synaptosomes (pKb values = 8.6 and 9.3) and (R)-alpha-MeHA reversal of electric field-stimulated guinea pig ileum contractions (pA2 values = 7.1 and 8.3). A-304121 and A-317920 are also more efficacious inverse agonists in reversing basal guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTP gamma S) binding at the human H3R (pEC50 values = 5.7 and 7.0) than are the imidazole antagonists. These novel and selective piperazine amides represent useful leads for the development of H3R antagonist therapeutic agents.  (+info)