(1/519) Dephosphorylation of the catenins p120 and p100 in endothelial cells in response to inflammatory stimuli.

Inflammatory mediators such as histamine and thrombin increase the tight-junction permeability of endothelial cells. Tight-junction permeability may be independently controlled, but is dependent on the adherens junction, where adhesion is achieved through homotypic interaction of cadherins, which in turn are associated with cytoplasmic proteins, the catenins. p120, also termed p120(cas)/p120(ctn), and its splice variant, p100, are catenins. p120, originally discovered as a substrate of the tyrosine kinase Src, is also a target for a protein kinase C-stimulated pathway in epithelial cells, causing its serine/threonine dephosphorylation. The present study shows that pharmacological activation of protein kinase C stimulated a similar pathway in endothelial cells. Activation of receptors for agents such as histamine (H1), thrombin and lysophosphatidic acid in the endothelial cells also caused serine/threonine dephosphorylation of p120 and p100, suggesting physiological relevance. However, protein kinase C inhibitors, although blocking the effect of pharmacological activation of protein kinase C, did not block the effects due to receptor activation. Calcium mobilization and the myosin-light-chain-kinase pathway do not participate in p120/p100 signalling. In conclusion, endothelial cells possess protein kinase C-dependent and -independent pathways regulating p120/p100 serine/threonine phosphorylation. These data describe a new connection between inflammatory agents, receptor-stimulated signalling and pathways potentially influencing intercellular adhesion in endothelial cells.  (+info)

(2/519) In vivo demonstration of H3-histaminergic inhibition of cardiac sympathetic stimulation by R-alpha-methyl-histamine and its prodrug BP 2.94 in the dog.

1. The aim of this study was to investigate whether histamine H3-receptor agonists could inhibit the effects of cardiac sympathetic nerve stimulation in the dog. 2. Catecholamine release by the heart and the associated variation of haemodynamic parameters were measured after electrical stimulation of the right cardiac sympathetic nerves (1-4 Hz, 10 V, 10 ms) in the anaesthetized dog treated with R-alpha-methyl-histamine (R-HA) and its prodrug BP 2.94 (BP). 3. Cardiac sympathetic stimulation induced a noradrenaline release into the coronary sinus along with a tachycardia and an increase in left ventricular pressure and contractility without changes in mean arterial pressure. Intravenous administration of H3-receptor agonists significantly decreased noradrenaline release by the heart (R-HA at 2 micromol kg(-1) h(-1): +77 +/- 25 vs +405 +/- 82; BP 2.94 at 1 mg kg(-1): +12 +/- 11 vs +330 +/- 100 pg ml(-1) in control conditions, P < or = 0.05), and increases in heart rate (R-HA at 2 micromol kg(-1) h(-1): +26 +/- 8 vs +65 +/- 10 and BP 2.94 at 1 mg kg(-1): +30 +/- 8 vs 75 +/- 6 beats min(-1), in control conditions P < or = 0.05), left ventricular pressure, and contractility. Treatment with SC 359 (1 mg kg(-1)) a selective H3-antagonist, reversed the effects of H3-receptor agonists. Treatment with R-HA at 2 micromol kg(-1) h(-1) and BP 2.94 at 1 mg kg(-1) tended to decrease, while that with SC 359 significantly increased basal heart rate (from 111 +/- 3 to 130 +/- 5 beats min(-1), P < or = 0.001). 4. Functional H3-receptors are present on sympathetic nerve endings in the dog heart. Their stimulation by R-alpha-methyl-histamine or BP 2.94 can inhibit noradrenaline release by the heart and its associated haemodynamic effects.  (+info)

(3/519) On the mechanism of histaminergic inhibition of glutamate release in the rat dentate gyrus.

1. Histaminergic depression of excitatory synaptic transmission in the rat dentate gyrus was investigated using extracellular and whole-cell patch-clamp recording techniques in vitro. 2. Application of histamine (10 microM, 5 min) depressed synaptic transmission in the dentate gyrus for 1 h. This depression was blocked by the selective antagonist of histamine H3 receptors, thioperamide (10 microM). 3. The magnitude of the depression caused by histamine was inversely related to the extracellular Ca2+ concentration. Application of the N-type calcium channel blocker omega-conotoxin (0. 5 or 1 microM) or the P/Q-type calcium channel blocker omega-agatoxin (800 nM) did not prevent depression of synaptic transmission by histamine. 4. The potassium channel blocker 4-aminopyridine (4-AP, 100 microM) enhanced synaptic transmission and reduced the depressant effect of histamine (10 microM). 4-AP reduced the effect of histamine more in 2 mM extracellular calcium than in 4 mM extracellular calcium. 5. Histamine (10 microM) did not affect the amplitude of miniature excitatory postsynaptic currents (mEPSCs) and had only a small effect on their frequency. 6. Histaminergic depression was not blocked by an inhibitor of serine/threonine protein kinases, H7 (100 microM), or by an inhibitor of tyrosine kinases, Lavendustin A (10 microM). 7. Application of adenosine (20 microM) or the adenosine A1 agonist N6-cyclopentyladenosine (CPA, 0.3 microM) completely occluded the effect of histamine (10 microM). 8. We conclude that histamine, acting on histamine H3 receptors, inhibits glutamate release by inhibiting presynaptic calcium entry, via a direct G-protein-mediated inhibition of multiple calcium channels. Histamine H3 receptors and adenosine A1 receptors act upon a common final effector to cause presynaptic inhibition.  (+info)

(4/519) The role of prostaglandins in chemically induced inflammation.

Dye leakage in rats, produced by intracutaneous injections of irritants into the abdominal skin, was quantitated using the Evans blue technique of Harada et al. (1971). In control rats and in rats pretreated with indomethacin (an inhibitor of prostaglandin synthesis) concentration-response lines were obtained for 5-hydroxytryptamine, histamine, bradykinin and prostaglandin E1, bradykinin in the presence of prostaglandin E1 (10-6 M), adenosine-5'-triphosphate, compound 48/80, capsaicin and silver nitrate. In rats pretreated with indomethacin the dye leakage responses to histamine, prostaglandin E1, adenosine-5'-triphosphate and silver nitrate were significantly reduced, but no significant changes were observed in the responses to the other irritants. It is suggested that part of the action of histamine, adenosine-5'-triphosphate and prostagland in E1 is produced indirectly by releaseor stimulation of the synthesis of prostaglandins or their precursors. These results might have important implications in the understanding of the inflammatory response.  (+info)

(5/519) Identification and pharmacological characterization of a series of new 1H-4-substituted-imidazoyl histamine H3 receptor ligands.

A new series of 1H-4-substituted imidazole compounds were synthesized and identified as potent and selective histamine (HA) H3 receptor ligands. These ligands establish that HA H3 antagonists exhibit stereoselective and conformational preferences in their binding to the HA H3 receptor. Structure-activity relationships were determined in vitro by HA H3 receptor-binding affinities using [3H]Nalpha-methylhistamine and rat cerebral cortical tissue homogenates. Several derivatives containing olefin, amide, and acetylene functional groups were identified as potent HA H3 receptor ligands. In the olefin series, GT-2227 (4-(6-cyclohexylhex-cis-3-enyl)imidazole) was identified as a potent HA H3 receptor ligand with a Ki of 4.2 +/- 0.6 nM, while the trans isomer (GT-2228) displayed a reduced potency (Ki = 15.2 +/- 2.4 nM). GT-2227 was also found to have excellent central nervous system penetration in an ex vivo binding paradigm (ED50 = 0.7 mg/kg i.p.). In the acetylene series, GT-2260 and GT-2286 both exhibited high affinity (Ki = 2.9 +/- 0.2 and 0.95 +/- 0.3 nM) and excellent central nervous system penetration profiles (ED50 = 0.43 and 0.48 mg/kg i.p., respectively). As a prototype for the series, GT-2227 showed high affinity for the human HA H3 receptor (3.2 nM) and minimal affinity for the human HA H1 (Ki = 13,407 +/- 540 nM) and H2 (Ki = 4,469 +/- 564 nM) receptor subtypes. GT-2227 also showed good selectivity for the HA H3 receptor over a broad spectrum of other neurotransmitter receptors (IC50 >/= 1 microM). Furthermore, GT-2227 improved acquisition in a cognitive paradigm without behavioral excitation or effect on spontaneous locomotor activity. In summary, the present studies demonstrate the development of novel HA H3-selective ligands, and lend support for the use of such agents in the treatment of disorders associated with cognitive or attentional deficits.  (+info)

(6/519) Development of trans-2-[1H-imidazol-4-yl] cyclopropane derivatives as new high-affinity histamine H3 receptor ligands.

Previously, a novel series of 1H-4-substituted imidazole compounds were described as potent and selective histamine (HA) H3 receptor ligands (Yates et al., 1999). The present studies extend the structure-activity relationships for optimal HA H3 receptor affinity and central nervous system penetration by incorporation of a conformationally restricted cyclopropane nucleus. Moreover, the current studies extend our understanding of ligand-receptor interactions at the HA H3 receptor with the development of high affinity HA H3 receptor antagonists containing a stereochemical presentation. Structure-activity relationships were established from in vitro HA H3 receptor-binding affinities using [3H]Nalpha-methylhistamine and rat cortical tissue homogenates. Systematic optimization of multiple structural features critical for HA H3 receptor affinity provided some of the most potent HA H3 receptor agents described. For example, GT-2331 was determined to bind to a single population of HA H3 receptors with a Ki of 0.125 nM. In vivo, GT-2331 has a favorable central nervous system penetration profile with an ED50 of 0.08 mg/kg (i.p.) in rats and a long duration of action (T1/2 > 4 h). In addition, GT-2331 was extremely selective for the HA H3 receptor versus other HA receptors and a battery of neurotransmitter, neuropeptide, hormone, or enzyme systems. Several compounds were tested in vitro which suggested HA H3 receptor heterogeneity and are discussed in terms of structure-activity relationships for the HA H3 receptor.  (+info)

(7/519) New treatments for allergic rhinitis.

OBJECTIVE: To review new treatments for allergic rhinitis. QUALITY OF EVIDENCE: Most studies supporting the principles in this paper are double-blind, placebo-controlled trials. Good evidence supports use of antihistamines, nasal steroid sprays, and immunotherapy. Fewer trials have been done on the new antileukotrienes. MAIN MESSAGE: Allergic rhinitis causes significant morbidity, which can be successfully treated. Newer antihistamines, developed to replace terfenadine and astemizole which have potential side effects, include loratadine, cetirizine, and the newest, fexofenadine. Intranasal steroid sprays are also effective, particularly for people with nasal stuffiness. One study showed some growth retardation in children using beclomethasone over a prolonged period (1 year). The newer steroid sprays, such as fluticasone, budesonide, and mometasone furoate aqueous, however, have not been studied in the same way and are usually recommended for shorter periods. The newest group of medications showing real promise are the antileukotrienes, including zafirlukast and montelukast. Taken orally, these medications avoid the discomfort of nasal sprays and seem to have few side effects. Immunotherapy offers a new option: a short-course, preseasonal series of six to 11 injections that reduces the burden on patients for year-round therapy. Combinations of these therapies are also possible. CONCLUSIONS: With new medications and immunotherapy options, family physicians can offer effective treatment to patients with allergic rhinitis.  (+info)

(8/519) Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure.

High-affinity histamine-binding proteins (HBPs) were discovered in the saliva of Rhipicephalus appendiculatus ticks. Their ability to outcompete histamine receptors indicates that they suppress inflammation during blood feeding. The crystal structure of a histamine-bound HBP, determined at 1.25 A resolution, reveals a lipocalin fold novel in containing two binding sites for the same ligand. The sites are orthogonally arranged and highly rigid and form an internal surface of unusual polar character that complements the physicochemical properties of histamine. As soluble receptors of histamine, HBPs offer a new strategy for controlling histamine-based diseases.  (+info)