Major changes in the brain histamine system of the ground squirrel Citellus lateralis during hibernation. (1/394)

Hibernation in mammals such as the rodent hibernator Citellus lateralis is a physiological state in which CNS activity is endogenously maintained at a very low, but functionally responsive, level. The neurotransmitter histamine is involved in the regulation of diurnal rhythms and body temperature in nonhibernators and, therefore, could likely play an important role in maintaining the hibernating state. In this study, we show that histamine neuronal systems undergo major changes during hibernation that are consistent with such a role. Immunohistochemical mapping of histaminergic fibers in the brains of hibernating and nonhibernating golden-mantled ground squirrels (C. lateralis) showed a clear increase in fiber density during the hibernating state. The tissue levels of histamine and its first metabolite tele-methylhistamine were also elevated throughout the brain of hibernating animals, suggesting an increase in histamine turnover during hibernation, which occurs without an increase in histidine decarboxylase mRNA expression. This hibernation-related apparent augmentation of histaminergic neurotransmission was particularly evident in the hypothalamus and hippocampus, areas of importance to the control of the hibernating state, in which tele-methylhistamine levels were increased more than threefold. These changes in the histamine neuronal system differ from those reported for the metabolic pattern in other monoaminergic systems during hibernation, which generally indicate a decrease in turnover. Our results suggest that the influence of histamine neuronal systems may be important in controlling CNS activity during hibernation.  (+info)

Sex steroid and prolactin profiles in male American black bears (Ursus americanus) during denning. (2/394)

Serum sex steroid and prolactin profiles were examined in the male American black bear, Ursus americanus during denning. Sera collected in December and the following March from 8 denning male black bears in Minnesota, U.S.A. were assayed for testosterone, estradiol-17 beta and prolactin. Eight bears were confirmed to be the denning mode based on a serum urea to creatinine ratio less than 10. Serum testosterone concentrations tended to increase from December to the subsequent March whereas serum estradiol-17 beta concentrations tended to decrease during this period. There were few changes in serum prolactin concentrations between December and March. These findings suggest that spermatogenesis and testicular steroidogenesis initiated during denning may be influenced by changes in serum sex steroid concentrations in the American black bear.  (+info)

Nuclear bodies are usual constituents in tissues of hibernating dormice. (3/394)

In previous studies we demonstrated in several tissues of the hazel dormouse Muscardinus avellanarius that during hibernation cell nuclei contain particular structural constituents absent in euthermia. In the present study we examine the same tissues in euthermic and hibernating individuals of the edible dormouse Glis glis in order to investigate possible modifications of nuclear structural constituents occurring during hibernation in this species. Edible dormice were captured in the wild and maintained in an external animal house. Samples of liver, pancreas, brown adipose tissue and adrenal cortex were taken from three hibernating and three euthermic animals and processed for resin embedding. Ultrastructural and immunocytochemical studies were carried out on cell nuclei of these tissues. The most evident feature of cell nuclei of hibernating dormice was the presence of several nuclear bodies, namely fibro-granular material, amorphous bodies, coiled bodies, perichromatin granule-like granules and nucleoplasmic fibrils, the distribution of which was peculiar to each tissue. No one of these constituents was detectable during euthermia. Immunocytochemical analyses revealed that they contain some splicing factors. Apart from some differences, maybe due to the different characteristics of lethargy, the nuclear bodies found in edible dormice were morphologically and immunocytochemically similar to those previously described in the same tissues of hazel dormice. They therefore seem to be strictly correlated to the hibernating state. If they represent storage and/or assembly sites of splicing factors to be rapidly used upon arousal, they could represent a usual structural feature in cells of hibernating species.  (+info)

Gene expression in the brain across the hibernation cycle. (4/394)

The purpose of this study was to characterize changes in gene expression in the brain of a seasonal hibernator, the golden-mantled ground squirrel, Spermophilus lateralis, during the hibernation season. Very little information is available on molecular changes that correlate with hibernation state, and what has been done focused mainly on seasonal changes in peripheral tissues. We produced over 4000 reverse transcription-PCR products from euthermic and hibernating brain and compared them using differential display. Twenty-nine of the most promising were examined by Northern analysis. Although some small differences were observed across hibernation states, none of the 29 had significant changes. However, a more direct approach, investigating expression of putative hibernation-responsive genes by Northern analysis, revealed an increase in expression of transcription factors c-fos, junB, and c-Jun, but not junD, commencing during late torpor and peaking during the arousal phase of individual hibernation bouts. In contrast, prostaglandin D2 synthase declined during late torpor and arousal but returned to a high level on return to euthermia. Other genes that have putative roles in mammalian sleep or specific brain functions, including somatostatin, enkephalin, growth-associated protein 43, glutamate acid decarboxylases 65/67, histidine decarboxylase, and a sleep-related transcript SD464 did not change significantly during individual hibernation bouts. We also observed no decline in total RNA or total mRNA during torpor; such a decline had been previously hypothesized. Therefore, it appears that the dramatic changes in body temperature and other physiological variables that accompany hibernation involve only modest reprogramming of gene expression or steady-state mRNA levels.  (+info)

Hypoperfusion-induced contractile failure does not require changes in cardiac energetics. (5/394)

Decreasing coronary perfusion causes an immediate decrease in contractile function via unknown mechanisms. It has long been suspected that this contractile dysfunction is caused by ischemia-induced changes in cardiac energetics. Our goal was to determine whether changes in cardiac energetics necessarily precede the contractile dysfunction as one would expect if a causal relationship exists. In 14 isolated rat hearts, we gradually decreased coronary perfusion using a coronary perfusate with a normal hematocrit and normal concentrations of the major metabolic substrates. Using 31P NMR spectroscopy to measure ATP, phosphocreatine (PCr), Pi, and ADP concentrations ([ATP], [PCr], [Pi], [ADP]), pH, and amount of free energy released from ATP hydrolysis (|DeltaGATP|), we found that none of these variables changed significantly until several minutes after systolic pressure had significantly decreased. Even when developed pressure had decreased by over one-third, only very slight changes in [Pi], pH, and |DeltaGATP| had occurred, with no significant changes in [ATP], [PCr], or [ADP]. Additionally, the rate of high-energy phosphate transfer between ATP and PCr did not decrease enough during hypoperfusion to explain the contractile dysfunction. We conclude that nonenergetic factors are the dominant cause of the initial decrease in systolic function when myocardial perfusion is decreased.  (+info)

Differential 18F-2-deoxyglucose uptake in viable dysfunctional myocardium with normal resting perfusion: evidence for chronic stunning in pigs. (6/394)

BACKGROUND: Viable, chronically dysfunctional myocardium can have normal or reduced resting flow. We previously produced hibernating myocardium with reduced resting flow in pigs with a chronic stenosis and hypothesized that hibernation is preceded by chronic stunning with normal resting perfusion. METHODS AND RESULTS: Pigs instrumented with a proximal left anterior descending coronary artery (LAD) stenosis were studied 1 or 2 months later in the closed-chest anesthetized state. Stenosis severity increased from 74+/-5% at 1 month to 83+/-6% at 2 months and was accompanied by anteroapical hypokinesis (wall motion score, 2.1+/-0.1 at 1 month and 1.5+/-0.3 at 2 months; normal=3). Resting perfusion was similar in normal and dysfunctional regions, but the deposition of 18F-2-deoxyglucose (FDG) varied. At 1 month, subendocardial FDG deposition by excised tissue counting was similar in each region (0. 034+/-0.006 mL. g-1. min-1 LAD region versus 0.032+/-0.004 mL. g-1. min-1 in normal regions, P=NS). At 2 months, subendocardial FDG deposition was increased (0.084+/-0.025 mL. g-1. min-1 LAD region versus 0.042+/-0.017 mL. g-1. min-1 in normal regions, P<0.05). Increases in FDG uptake were inversely related to LAD subendocardial flow reserve during adenosine (3.5+/-0.6 at 1 month versus 1.4+/-0.2 at 2 months, P<0.01). CONCLUSIONS: These data indicate a progression of physiological adaptations in pigs with viable, chronically dysfunctional myocardium. As coronary flow reserve decreases, fasting FDG uptake increases. Flow at rest remains normal, consistent with "chronic stunning," and contrasts with reduced flow and increased FDG characteristic of hibernating myocardium in similarly instrumented pigs after 3 months. This temporal progression of adaptations supports the hypothesis of a transition from a physiological phenotype of stunning to hibernation.  (+info)

Opening of potassium channels: the common cardioprotective link between preconditioning and natural hibernation? (7/394)

BACKGROUND: The tolerance of hibernating mammals to cold hypoxia is related to a factor similar to agonists of delta-opioid receptors. This study was designed to assess whether activation of these receptors could reproduce the protection conferred by ischemic preconditioning and whether such cardioprotection was similarly mediated by an opening of ATP-sensitive potassium (KATP) channels. METHODS AND RESULTS: Thirty-two isolated rat hearts were arrested with and stored in Celsior at 4 degrees C for 5 hours before being reperfused for 2 hours. They were divided into 4 equal groups. Group 1 hearts served as controls. In group 2, ischemic preconditioning was elicited by two 5-minute global ischemia periods interspersed with 5 minutes of reperfusion before arrest. In group 3, hearts were pharmacologically preconditioned with a 15-minute infusion of the delta-opioid receptor agonist D-Ala2-D-Leu5-enkephalin (DADLE; 200 micromol/L). In group 4, the protocol was similar to group 3 except that infusion of DADLE was preceded by infusion of the KATP blocker glibenclamide (50 micromol/L). The salutary effects of both forms of preconditioning were primarily manifest as a better preservation of diastolic function, a reduced myocardial edema, and reduced creatine kinase leakage. This protection was abolished by administration of glibenclamide before DADLE. CONCLUSIONS: These data suggest that activation of delta-opioid receptors improves recovery of cold-stored hearts to a similar extent as ischemic preconditioning, most likely through an opening of KATP channels. This provides a rationale for improving the preservation of hearts for transplantation by pharmacologically duplicating the common pathway to natural hibernation and preconditioning.  (+info)

Alterations in pulmonary surfactant after rapid arousal from torpor in the marsupial Sminthopsis crassicaudata. (8/394)

Torpor in the dunnart, Sminthopsis crassicaudata, alters surfactant lipid composition and surface activity. Here we investigated changes in surfactant composition and surface activity over 1 h after rapid arousal from torpor (15-30 degrees C at 1 degrees C/min). We measured total phospholipid (PL), disaturated PL (DSP), and cholesterol (Chol) content of surfactant lavage and surface activity (measured at both 15 and 37 degrees C in the captive bubble surfactometer). Immediately after arousal, Chol decreased (from 4.1 +/- 0.05 to 2.8 +/- 0.3 mg/g dry lung) and reached warm-active levels by 60 min after arousal. The Chol/DSP and Chol/PL ratios both decreased to warm-active levels 5 min after arousal because PL, DSP, and the DSP/PL ratio remained elevated over the 60 min after arousal. Minimal surface tension and film compressibility at 17 mN/m at 37 degrees C both decreased 5 min after arousal, correlating with rapid changes in surfactant Chol. Therefore, changes in lipids matched changes in surface activity during the postarousal period.  (+info)