Alginate formation in Azotobacter vinelandii UWD during stationary phase and the turnover of poly-beta-hydroxybutyrate. (33/801)

Azotobacter vinelandii UWD is a mutant of strain UW that is defective in the respiratory oxidation of NADH. This mutation causes an overproduction of polyhydroxyalkanoates (PHAs), as polyester synthesis is used as an alternative electron sink. Since PHAs have potential for use as natural, biodegradable plastics, studies of physiology related to their production are of interest. Alginate production by this strain is limited to < 11 microg (mg cell protein)(-1), which permits high efficiency conversion of carbon source into PHA. However, < or = 400 microg (mg cell protein)(-1) was formed when UWD cells were oxygen-limited and in the stationary phase of growth. Alginate formation was fuelled by PHA turnover, which was coincident with the synthesis of alkyl resorcinols, under conditions of exogenous glucose limitation. However, alginate production was a phenotypic and reversible change. Alginate production was stopped by interruption of algD with Tn5lacZ. LacZ activity in UWD was shown to increase in stationary phase, while LacZ activity in a similarly constructed mutant of strain UW did not. Transcription of algD in strain UWD started from a previously identified RpoD promoter and not from the AlgU (RpoE) promoter. This is because strain UWD has a natural insertion element in algU. Differences between strain UW and UWD may reside in the defective respiratory oxidation of NADH, where the NADH surplus in strain UWD may act as a signal of stationary phase. Indeed, a backcross of UW DNA into UWD generated NADH-oxidase-proficient cells that failed to form alginate in stationary phase. Evidence is also presented to show that the RpoD promoter may be recognized by the stationary phase sigma factor (RpoS), which may mediate alginate production in strain UWD.  (+info)

Preservation of the delayed-type hypersensitivity response to alloantigen by xyloglucans or oligogalacturonide does not correlate with the capacity to reject ultraviolet-induced skin tumors in mice. (34/801)

Chronic exposure to ultraviolet radiation suppresses T cell-mediated immune responses and induces the formation of suppressor T lymphocytes that prevent the rejection of highly antigenic ultraviolet-induced skin cancers in mice. Tamarind seed xyloglucans and pectinic oligogalacturonides prevent suppression of delayed-type hypersensitivity immune responses in mice to Candida albicans and alloantigen caused by a single exposure of ultraviolet radiation. We therefore investigated the ability of these poly/oligosaccharides to prevent suppression of T cell-mediated immune responses and suppressor cell induction during chronic ultraviolet irradiation and to preserve the capacity of ultraviolet-irradiated mice to reject a transplanted, highly antigenic, ultraviolet-induced tumor. C3H/HeN mice were treated 3x per week for 12 wk with 15 kJ per m2 ultraviolet B radiation followed by application of the polysaccharides/ oligosaccharides. The delayed-type hypersensitivity responses to C. albicans and alloantigen were measured after 1, 6, and 12 wk of treatment. Following the 12th wk of treatment the remaining mice were injected with the highly antigenic ultraviolet-induced, syngeneic tumor cell line UV5497-5. The polysaccharides/oligosaccharides protected delayed-type hypersensitivity responses to C. albicans but not contact hypersensitivity responses to dinitrofluorobenzene for up to 6 wk of ultraviolet radiation after which protection declined and suppressor cells were observed. In contrast, the delayed-type hypersensitivity response to alloantigen was preserved for the entire 12 wk of ultraviolet irradiation. Despite protection of immunity to alloantigen, the transplanted tumor cells grew equally well in all ultraviolet-irradiated animals. These results indicate that delayed-type hypersensitivity responses are heterogeneous and that delayed-type hypersensitivity to alloantigen is not a surrogate marker for rejection of ultraviolet-induced skin tumors.  (+info)

Purification and characterization of bifunctional alginate lyase from Alteromonas sp. strain no. 272 and its action on saturated oligomeric substrates. (35/801)

A marine bacterium (strain No. 272) isolated from sea mud in Omura Bay produced an alginate lyase and was classified as an Alteromonas species. The enzyme was purified from the culture medium of the bacterium by DEAE-Cellulofine, Sephadex G-100 gel chromatography to an electrophoretically homogeneous state in the presence and absence of SDS. The molecular mass of the enzyme was 23 and 33.9 kDa on Sephadex G-100 column chromatography and SDS-polyacrylamide gel electrophoresis, respectively, with an isoelectric point of 3.8. The predominant secondary structure of the enzyme was found to be most likely beta-structure by circular dichroism. The enzyme was most active at pH 7.5-8.0 and stable around pH 5-11. The enzyme was more labile in Tris-HCI buffer (pH 7.0) to heat treatment, than in phosphate buffer (pH 7.0). No of metal ions significantly affected the enzyme activity. The enzyme acted on sodium alginate in an endo-type manner and on two components of alginate, poly-alpha1,4-L-guluronate and poly-beta1,4-D-mannuronate, as judged by routine ultraviolet assay (235 nm) and circular dichroic spectral changes of the substrates. However, the coexisting poly-alpha1,4-L-guluronate and poly-beta1,4-D-mannuronate apparently interacted with the enzyme in a competitive manner. Although the enzyme depolymerized alginate in an endo-type, it did not act on trimeric guluronate and mannuronate, but on the tetramers or more. The kinetic analyses showed that kcat/Km for each oligomer was larger for the guluronate oligomers than for the mannuronate ones, and that the subsite structure of the enzyme most likely consisted of six binding sites from the intrinsic reaction rate constant (kint) and intrinsic substrate binding constant (Kint).  (+info)

Pulmonary interstitial pressure and tissue matrix structure in acute hypoxia. (36/801)

Pulmonary interstitial pressure was measured via micropuncture in anesthetized rabbits in normoxia and after breathing 12% O(2). In normoxia [arterial PO(2) = 88 +/- 2 (SD) mmHg], pulmonary arterial pressure and pulmonary interstitial pressure were 16 +/- 8 and -9.6 +/- 2 cmH(2)O, respectively. After 6 h of hypoxia (arterial PO(2) = 39 +/- 16 mm Hg), the corresponding values were 30+/-8 and 3.5+/-2.5 cm H(2)O (P<0.05). Pulmonary interstitial proteoglycan extractability, evaluated by hexuronate assay after 0.4 M guanidinium hydrochloride extraction, was 12.3, 32.4, and 60.6 microg/g wet tissue in normoxia and after 3 and 6 h of hypoxia, respectively, indicating a weakening of the noncovalent bonds linking proteoglycans to other extracellular matrix components. Gel filtration chromatography showed an increased fragmentation of chondroitin sulfate- and heparan sulfate-proteoglycans during hypoxic exposure, accounting for a loss of extracellular matrix native architecture and basement membrane structure. Gelatin zymography demonstrated increased amounts of the proteolytically activated form of gelatinase B (matrix metalloproteinase-9) after hypoxic exposure, providing evidence that the activation of proteinases may play a role in hypoxia-induced lung injury.  (+info)

Isolation and characterizartion of alginic acid from commercially cultured Nemacystus decipiens (Itomozuku). (37/801)

An alginate was isolated from commercially cultured Nemacystus decipiens which had been harvested in Yonashiro Town (Okinawa, Japan). The yield of the alginate was 1.6% (w/w of wet alga), and the uronic acid, ash and moisture contents of the alginate were 86.0%, 12.0%, and 2.3% (w/w), respectively. The molecular mass of the alginate was estimated to be about 1.5 x 10(5). The infrared spectrum and optical rotation of the alginate were in agreement with those of the standard alginate. D-Mannuronic acid and L-guluronic acid were identified by 1H- and 13C-NMR spectroscopy, the molar ratio of both sugar residues being estimated to be 0.72:1.00.  (+info)

Control of exuT activity for galacturonate transport by the negative regulator ExuR in Erwinia chrysanthemi EC16. (38/801)

The negative regulatory protein ExuR in Erwinia chrysanthemi regulates expression of the galacturonate uptake (exuT) and utilization (uxaA, uxaB, uxaC) genes. We cloned and determined the nucleotide sequence of the exuR gene from E. chrysanthemi EC16. Analysis of the deduced amino acid sequence indicates that this protein possesses a helix-turn-helix motif and belongs to the GntR family of transcriptional repressors. Northern blot analysis and studies with transcriptional fusions of exuT in wild-type and exuR mutant backgrounds indicate that exuT transcription is deregulated in the exuR strain in vivo and in planta. [14C]-galacturonic acid uptake was constitutively high under inducing and noninducing conditions in the exuR mutant. Maximal exuT transcription activity was observed within 8 h of bacterial inoculation into potato tubers, well before any visible symptoms of disease were detected. This suggests that ExuT transport activity in E. chrysanthemi is important in the early stages of disease development.  (+info)

Purification and properties of a galacturonic acid-releasing exopolygalacturonase from a strain of Bacillus. (39/801)

An exopolygalacturonase [exo-PGase; poly (1,4-alpha-D-galacturonide) galacturonohydrolase, EC 3.2.1.67] was found to be extracellularly produced by Bacillus sp. strain KSM-P443. The exo-PGase was purified to homogeneity, as judged by polyacrylamide gel electrophoresis, through sequential column chromatographies. The enzyme had a molecular weight of approximately 45,000 and an isoelectric point of pH 5.8. The N-terminal sequence was Ser-Met-Gln-Lys-Ile-Lys-Asp-Glu-Ile-Leu-Lys-Thr-Leu-Lys-Val-Pro-Val-Phe and had no sequence similarity to those of other pectinolytic enzymes reported to date. Maximum activity toward polygalacturonic acid (PGA) was observed at 60 degrees C and at pH 7.0 in 100 mM Tris-HCl buffer without requiring any metal ions. When the chain length of oligogalacturonic acids increased, the apparent Km for them decreased, but the kcat values increased. This is the first bacterial exo-PGase that releases exclusively mono-galacturonic acid from PGA, di-, tri-, tetra-, and penta-galacturonic acids.  (+info)

Effects of high molecular weight hyaluronan on the distribution and movement of proteoglycan around chondrocytes cultured in alginate beads. (40/801)

OBJECTIVE: To evaluate the effects of high molecular weight hyaluronan (HA) on the distribution and movement of proteoglycan (PG) formed around rabbit chondrocytes cultured in alginate beads. DESIGN: Rooster comb-derived HA (MW 8x10(5) Da) was co-polymerized in alginate gel to study the direct effects of extrinsic HA on chondrocytes. PG metabolism of rabbit chondrocytes cultured in alginate beads was examined by measuring the incorporation of [(35)S]sulfate into glycosaminoglycan in two distinct regions, the cells with their cell-associated matrix (CM) and the further-removed matrix (FRM). Immunohistochemical analysis was performed using monoclonal antibodies against chondroitin sulfate and keratan sulfate. Autoradiography using degenerated cartilage tissue from the rabbit osteoarthritis (OA) model was performed to discover the effect of HA on the distribution of newly-synthesized PG in the cartilage tissue. RESULTS: The incorporation of [(35)S]sulfate into newly-synthesized PG in the cells with CM decreased with the addition of 0.125-1.0 mg/ml HA, while the incorporation in the FRM increased. These effects of HA on the distribution of newly-synthesized PG were the same either in chondrocytes with CM or chondrocytes without CM. Immunohistochemical analysis showed that staining of PG in the CM was decreased and staining in the FRM was increased in the HA treated group compared to the control group. Autoradiography using degenerated cartilage tissue from the rabbit OA model indicated that [(35)S]-labeled macromolecules showed a more diffuse distribution in the HA treated group compared with the control group. CONCLUSION: These results indicate that extrinsic HA could affect the movement of newly-synthesized PG from the CM to the FRM in both alginate beads and cartilage tissue.  (+info)