Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion in endocrine cells. (33/897)

In mammalian cells, activation of a Golgi-associated phospholipase D by ADP-ribosylation factor results in the hydrolysis of phosphatidylcholine to form phosphatidic acid (PA). This reaction stimulates the release of nascent secretory vesicles from the trans-Golgi network of endocrine cells. To understand the role of PA in mediating secretion, we have exploited the transphosphatidylation activity of phospholipase D. Rat anterior pituitary GH3 cells, which secrete growth hormone and prolactin, were treated with 1-butanol resulting in the synthesis of phosphatidylbutanol rather than PA. Under these conditions transport from the ER through the Golgi apparatus and secretion of polypeptide hormones were inhibited quantitatively. Furthermore, the in vitro synthesis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) by Golgi membranes was inhibited quantitatively. Most significantly, in the presence of 1-butanol the architecture of the Golgi apparatus was disrupted, resulting in its disassembly and fragmentation. Removal of the alcohol resulted in the rapid restoration of Golgi structure and secretion of growth hormone and prolactin. Our results suggest that PA stimulation of PtdIns(4,5)P(2) synthesis is required for maintaining the structural integrity and function of the Golgi apparatus.  (+info)

Blood group A antigen is a coreceptor in Plasmodium falciparum rosetting. (34/897)

The malaria parasite Plasmodium falciparum utilizes molecules present on the surface of uninfected red blood cells (RBC) for rosette formation, and a dependency on ABO antigens has been previously shown. In this study, the antirosetting effect of immune sera was related to the blood group of the infected human host. Sera from malaria-immune blood group A (or B) individuals were less prone to disrupt rosettes from clinical isolates of blood group A (or B) patients than to disrupt rosettes from isolates of blood group O patients. All fresh clinical isolates and laboratory strains exhibited distinct ABO blood group preferences, indicating that utilization of blood group antigens is a general feature of P. falciparum rosetting. Soluble A antigen strongly inhibited rosette formation when the parasite was cultivated in A RBC, while inhibition by glycosaminoglycans decreased. Furthermore, a soluble A antigen conjugate bound to the cell surface of parasitized RBC. Selective enzymatic digestion of blood group A antigen from the uninfected RBC surfaces totally abolished the preference of the parasite to form rosettes with these RBC, but rosettes could still form. Altogether, present data suggest an important role for A and B antigens as coreceptors in P. falciparum rosetting.  (+info)

Detection of hunter heterozygotes by enzymatic analysis of hair roots. (35/897)

We have developed a procedure for testing iduronate sulfatase, the enzyme deficient in Hunter syndrome, in single hair roots. Beta-Hexosaminidase was used as the reference enzyme. The ratio of iduronate sulfatase to beta--hexosaminidase, expressed in arbitrary units of activity, is near zero for Hunter patients and greater than 0.6 in almost all roots of normal individuals. Hair roots of Hunter heterozygotes show a characteristic continuum of activity ratios, ranging from totally deficient up to and including the normal range. The results are consistent with the origin of hair roots from a small number of progenitor cells which obey the Lyon hypothesis. The proportion of roots with low activity can be used to discriminate between normal and heterozygous individuals.  (+info)

A new determinant of endoplasmic reticulum localization is contained in the juxtamembrane region of the ectodomain of hepatitis C virus glycoprotein E1. (36/897)

Hepatitis C virus glycoproteins E1 and E2 do not reach the plasma membrane of the cell but accumulate intracellularly, mostly in the endoplasmic reticulum. Previous studies based on transient expression assays have shown that the transmembrane domains of both glycoproteins are sufficient to localize reporter proteins in the endoplasmic reticulum and that other localization signals may be contained in the ectodomain of E1 protein. To identify such signals we generated chimeric proteins between E1 and two reporter proteins, the human CD8 glycoprotein and the human alkaline phosphatase, and analyzed their subcellular localization in stable as well as transient transfectants. Our results showed that (i) an independent localization determinant for the endoplasmic reticulum is present in the juxtamembrane region of the ectodomain of E1 protein and (ii) the localization dictated by this determinant is either due to direct retention or to a recycling mechanism from the intermediate compartment/cis-Golgi complex region, which is clearly different from those previously described for other retrieval signals. These results show for the first time in mammalian cells that the localization in the endoplasmic reticulum of transmembrane protein can be determined by specific targeting signals acting in the lumen of the compartment.  (+info)

Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. (37/897)

The T-cell-mediated immune response plays a central role in the defense against intracellular pathogens. To avoid this immune response, viruses have evolved elaborate mechanisms that target and modulate many different aspects of the host's immune system. A target common to many of these viruses is the major histocompatibility complex (MHC) class I molecules. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes K3 and K5 zinc finger membrane proteins which remove MHC class I molecules from the cell surface. K3 and K5 exhibit 40% amino acid identity to each other and localize primarily near the plasma membrane. While K3 and K5 dramatically downregulated class I molecules, they displayed different specificities in downregulation of HLA allotypes. K5 significantly downregulated HLA-A and -B and downregulated HLA-C only weakly, but not HLA-E, whereas K3 downregulated all four HLA allotypes. This selective downregulation of HLA allotypes by K5 was partly due to differences in amino acid sequences in their transmembrane regions. Biochemical analyses demonstrated that while K3 and K5 did not affect expression and intracellular transport of class I molecules, their expression induced rapid endocytosis of the molecules. These results demonstrate that KSHV has evolved a novel immune evasion mechanism by harboring similar but distinct genes, K3 and K5, which target MHC class I molecules in different ways.  (+info)

Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9-A resolution. (38/897)

In this paper, we describe the structure of chitinase B from Serratia marcescens, which consists of a catalytic domain with a TIM-barrel fold and a 49-residue C-terminal chitin-binding domain. This chitinase is the first structure of a bacterial exochitinase, and it represents one of only a few examples of a glycosyl hydrolase structure having interacting catalytic and substrate-binding domains. The chitin-binding domain has exposed aromatic residues that contribute to a 55-A long continuous aromatic stretch extending into the active site. Binding of chitin oligomers is blocked beyond the -3 subsite, which explains why the enzyme has chitotriosidase activity and degrades the chitin chain from the nonreducing end. Comparison of the chitinase B structure with that of chitinase A explains why these enzymes act synergistically in the degradation of chitin.  (+info)

The long signal peptide isoform and its alternative processing direct the intracellular trafficking of interleukin-15. (39/897)

Two isoforms of interleukin (IL)-15 exist: one with a short and another with a long signal peptide (LSP). Experiments using combinations of the LSP and mature proteins IL-2, IL-15, and green fluorescent protein revealed complex pathways of intracellular trafficking. In one pathway, the LSP was unprocessed, and IL-15 was not glycosylated, remained in the cytoplasm, and was degraded. The second trafficking pathway involved endoplasmic reticulum entry, N-linked glycosylation, and alternative partial LSP processing. The third pathway involved endoplasmic reticulum entry, followed by glycosylation, complete processing, and ultimately secretion. The complex intracellular trafficking patterns of LSP-IL-15 with its impediments to secretion as well as impediments to translation may be required due to the potency of IL-15 as an inflammatory cytokine. In terms of a more positive role, we propose that intracellular infection may relieve the burdens on translation and intracellular trafficking to yield effective IL-15 expression.  (+info)

Glycosylation of GIRK1 at Asn119 and ROMK1 at Asn117 has different consequences in potassium channel function. (40/897)

GIRK (G protein-gated inward rectifier K(+) channel) proteins play critical functional roles in heart and brain physiology. Using antibodies directed to either GIRK1 or GIRK4, site-directed mutagenesis, and specific glycosidases, we have investigated the effects of glycosylation in the biosynthesis and heteromerization of these proteins expressed in oocytes. Both GIRK1 and GIRK4 have one extracellular consensus N-glycosylation site. Using chimeras between GIRK1 and GIRK4 as well as a GIRK1 N-glycosylation mutant, we report that GIRK1 was glycosylated at Asn(119), whereas GIRK4 was not glycosylated at Asn(132). GIRK1 membrane-spanning domain 1 was required for optimal glycosylation at Asn(119) because a chimera that contained GIRK4 membrane-spanning domain 1 significantly reduced the addition of a carbohydrate structure at this site. This finding may partly account for the reason that GIRK4 is not glycosylated at Asn(132), either as a homomer or when coexpressed with GIRK1. When the GIRK1(N119Q) mutant was coexpressed with GIRK4, the biophysical properties of the heteromeric channel and the magnitude of the agonist-induced currents were similar to those of controls. Thus, N-glycosylation of GIRK1 at Asn(119) does not appear to affect its physical association with GIRK4, the routing of the heteromer to the cell surface, or heteromeric channel function, unlike the dramatic functional effects of N-glycosylation of ROMK1 at Asn(117) (Schwalbe, R. A., Wang, Z., Wible, B. A., and Brown, A. M. (1995) J. Biol. Chem. 270, 15336-15340).  (+info)