The amino-terminal C/H1 domain of CREB binding protein mediates zta transcriptional activation of latent Epstein-Barr virus. (1/5808)

Latent Epstein-Barr virus (EBV) is maintained as a nucleosome-covered episome that can be transcriptionally activated by overexpression of the viral immediate-early protein, Zta. We show here that reactivation of latent EBV by Zta can be significantly enhanced by coexpression of the cellular coactivators CREB binding protein (CBP) and p300. A stable complex containing both Zta and CBP could be isolated from lytically stimulated, but not latently infected RAJI nuclear extracts. Zta-mediated viral reactivation and transcriptional activation were both significantly inhibited by coexpression of the E1A 12S protein but not by an N-terminal deletion mutation of E1A (E1ADelta2-36), which fails to bind CBP. Zta bound directly to two related cysteine- and histidine-rich domains of CBP, referred to as C/H1 and C/H3. These domains both interacted specifically with the transcriptional activation domain of Zta in an electrophoretic mobility shift assay. Interestingly, we found that the C/H3 domain was a potent dominant negative inhibitor of Zta transcriptional activation function. In contrast, an amino-terminal fragment containing the C/H1 domain was sufficient for coactivation of Zta transcription and viral reactivation function. Thus, CBP can stimulate the transcription of latent EBV in a histone acetyltransferase-independent manner mediated by the CBP amino-terminal C/H1-containing domain. We propose that CBP may regulate aspects of EBV latency and reactivation by integrating cellular signals mediated by competitive interactions between C/H1, C/H3, and the Zta activation domain.  (+info)

Epstein-barr virus regulates c-MYC, apoptosis, and tumorigenicity in Burkitt lymphoma. (2/5808)

Loss of the Epstein-Barr virus (EBV) genome from Akata Burkitt lymphoma (BL) cells is coincident with a loss of malignant phenotype, despite the fact that Akata and other EBV-positive BL cells express a restricted set of EBV gene products (type I latency) that are not known to overtly affect cell growth. Here we demonstrate that reestablishment of type I latency in EBV-negative Akata cells restores tumorigenicity and that tumorigenic potential correlates with an increased resistance to apoptosis under growth-limiting conditions. The antiapoptotic effect of EBV was associated with a higher level of Bcl-2 expression and an EBV-dependent decrease in steady-state levels of c-MYC protein. Although the EBV EBNA-1 protein is expressed in all EBV-associated tumors and is reported to have oncogenic potential, enforced expression of EBNA-1 alone in EBV-negative Akata cells failed to restore tumorigenicity or EBV-dependent down-regulation of c-MYC. These data provide direct evidence that EBV contributes to the tumorigenic potential of Burkitt lymphoma and suggest a novel model whereby a restricted latency program of EBV promotes B-cell survival, and thus virus persistence within an immune host, by selectively targeting the expression of c-MYC.  (+info)

Virus infection leads to localized hyperacetylation of histones H3 and H4 at the IFN-beta promoter. (3/5808)

Transcriptional activation of the human interferon-beta (IFN-beta) gene by virus infection requires the assembly of a higher order nucleoprotein complex, the enhanceosome, which consists of the transcriptional activators NF-kappa B (p50/p65), ATF-2/c-jun, IRF-3 and IRF-7, architectural protein HMGI(Y), and the coactivators p300 and CBP. In this report, we show that virus infection of cells results in a dramatic hyperacetylation of histones H3 and H4 that is localized to the IFN-beta promoter. Furthermore, expressing a truncated version of IRF-3, which lacks a p300/CBP interaction domain, suppresses both histone hyperacetylation and activation of the IFN-beta gene. Thus, coactivator-mediated localized hyperacetylation of histones may play a crucial role in inducible gene expression.  (+info)

Microsatellite instability, Epstein-Barr virus, mutation of type II transforming growth factor beta receptor and BAX in gastric carcinomas in Hong Kong Chinese. (4/5808)

Microsatellite instability (MI), the phenotypic manifestation of mismatch repair failure, is found in a proportion of gastric carcinomas. Little is known of the links between MI and Epstein-Barr virus (EBV) status and clinicopathological elements. Examination of genes mutated through the MI mechanism could also be expected to reveal important information on the carcinogenic pathway. Seventy-nine gastric carcinomas (61 EBV negative, 18 EBV positive) from local Hong Kong Chinese population, an intermediate-incidence area, were examined. Eight microsatellite loci, inclusive of the A10 tract of type II transforming growth factor beta receptor (TbetaR-II), were used to evaluate the MI status. MI in the BAX and insulin-like growth factor II receptor (IGF-IIR) genes were also examined. High-level MI (>40% unstable loci) was detected in ten cases (12.7%) and low-level MI (1-40% unstable loci) in three (3.8%). High-level MI was detected in two EBV-associated cases (11%) and the incidence was similar for the EBV-negative cases (13%). The high-level MIs were significantly associated with intestinal-type tumours (P = 0.03) and a more prominent lymphoid infiltrate (P = 0.04). Similar associations were noted in the EBV-positive carcinomas. The high-level MIs were more commonly located in the antrum, whereas the EBV-associated carcinomas were mostly located in body. Thirteen cardia cases were negative for both high-level MI and EBV. All patients aged below 55 were MI negative (P = 0.049). Of the high-level MIs, 80% had mutation in TbetaR-II, 40% in BAX and 0% in IGF-IIR. Of low-level MIs, 33% also had TbetaR-II mutation. These mutations were absent in the MI-negative cases. Of three lymphoepithelioma-like carcinomas, two cases were EBV positive and MI negative, one case was EBV negative but with high-level MI. In conclusion, high-level MIs were present regardless of the EBV status, and were found in a particular clinicopathological subset of gastric carcinoma patient. Inactivation of important growth regulatory genes observed in these carcinomas confirms the importance of MI in carcinogenesis.  (+info)

Control of apoptosis in Epstein Barr virus-positive nasopharyngeal carcinoma cells: opposite effects of CD95 and CD40 stimulation. (5/5808)

The expression and function of CD95 and CD40 were investigated in malignant cells from EBV-positive undifferentiated nasopharyngeal carcinomas (NPCs). Large amounts of CD95 and CD40 expression were detected in 15 of 16 EBV-positive NPC specimens. In contrast, CD95 was not detected in two biopsies from patients with EBV-negative differentiated NPCs. We tested whether the CD95 apoptotic pathway was functional in NPC cells by treating two EBV-positive NPC tumor lines in vitro with a CD95 agonist. In both cases, NPC cells were extremely susceptible to CD95-mediated apoptosis, despite strong constitutive expression of Bcl-x. Combined CD40 and CD95 stimulation was used to investigate the possible anti-apoptotic activity mediated by CD40. The CD40 receptor was activated by incubating NPC cells with murine L cells producing CD154, the CD40 ligand. This treatment resulted in a strong inhibition of CD95-related cytotoxicity. Such an anti-apoptotic effect of CD40 is well known for B lymphocytes, but has not previously been reported for epithelial cells. These data suggest that NPC tumor-infiltrating lymphocytes, which often produce the CD40 ligand in situ, may increase the survival of malignant cells, thereby enhancing tumor growth in patients.  (+info)

Lymphomatoid granulomatosis following autologous stem cell transplantation. (6/5808)

Lymphomatoid granulomatosis (LYG) is a rare angio-destructive lymphoproliferative disorder (LPD) of uncertain etiology, with prominent pulmonary involvement. Recent studies indicate that LYG is an Epstein-Barr virus (EBV)-associated B cell LPD with large numbers of background reactive T lymphocytes (T cell-rich B cell lymphoma). Although the disease frequently, but not exclusively, occurs in various immunodeficiency states, it has not been reported in association with the transient immunosuppression following autologous bone marrow/peripheral stem cell transplantation (ABM/PSCT). We describe a patient who developed lymphomatoid granulomatosis of the lung approximately 2 weeks after high-dose chemotherapy and autologous peripheral stem cell transplantation for multiple myeloma. Although molecular studies showed no evidence of EBV genome in the biopsy material, the serologic profile with high IgM titers was suggestive of primary EBV infection. Complete radiologic remission occurred following reconstitution of the patient's immune response after a 2-week course of ganciclovir treatment. Despite the apparently low frequency of LPD (both LYG and EBV-associated post-transplant lymphoma) in the ABMT setting, we believe that it should be considered in the differential diagnosis of patients whose clinical course following ABMT is complicated by fevers, in the absence of an identifiable infectious process.  (+info)

Rapid autologous marrow recovery and eradication of infectious mononucleosis despite severe immunosuppression following second transplantation for aplastic anemia. (7/5808)

A patient with aplastic anemia failed to respond to immunosuppressive therapy and first marrow transplantation (BMT). Recovery of autologous hematopoiesis was rapid following a second stem cell transplant with a non-myeloablative preparatory regimen. The autologous immune response to infectious mononucleosis (IM) 4 weeks post-transplant was normal despite recent and ongoing severe immunosuppression.  (+info)

Crossreactive recognition of viral, self, and bacterial peptide ligands by human class I-restricted cytotoxic T lymphocyte clonotypes: implications for molecular mimicry in autoimmune disease. (8/5808)

The immunodominant, CD8(+) cytotoxic T lymphocyte (CTL) response to the HLA-B8-restricted peptide, RAKFKQLL, located in the Epstein-Barr virus immediate-early antigen, BZLF1, is characterized by a diverse T cell receptor (TCR) repertoire. Here, we show that this diversity can be partitioned on the basis of crossreactive cytotoxicity patterns involving the recognition of a self peptide-RSKFRQIV-located in a serine/threonine kinase and a bacterial peptide-RRKYKQII-located in Staphylococcus aureus replication initiation protein. Thus CTL clones that recognized the viral, self, and bacterial peptides expressed a highly restricted alphabeta TCR phenotype. The CTL clones that recognized viral and self peptides were more oligoclonal, whereas clones that strictly recognized the viral peptide displayed a diverse TCR profile. Interestingly, the self and bacterial peptides equally were substantially less effective than the cognate viral peptide in sensitizing target cell lysis, and also resulted only in a weak reactivation of memory CTLs in limiting dilution assays, whereas the cognate peptide was highly immunogenic. The described crossreactions show that human antiviral, CD8(+) CTL responses can be shaped by peptide ligands derived from autoantigens and environmental bacterial antigens, thereby providing a firm structural basis for molecular mimicry involving class I-restricted CTLs in the pathogenesis of autoimmune disease.  (+info)