(1/3695) Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons.

Herpes simplex virus type 1 (HSV-1) has many attractive features that suggest its utility for gene transfer to neurons. However, viral cytotoxicity and transient transgene expression limit practical applications even in the absence of viral replication. Mutant viruses deleted for the immediate early (IE) gene, ICP4, an essential transcriptional transactivator, are toxic to many cell types in culture in which only the remaining IE genes are expressed. In order to test directly the toxicity of other IE gene products in neurons and develop a mutant background capable of longterm transgene expression, we generated mutants deleted for multiple IE genes in various combinations and tested their relative cytotoxicity in 9L rat gliosarcoma cells, Vero monkey kidney cells, and primary rat cortical and dorsal root neurons in culture. Viral mutants deleted simultaneously for the IE genes encoding ICP4, ICP22 and ICP27 showed substantially reduced cytotoxicity compared with viruses deleted for ICP4 alone or ICP4 in combination with either ICP22, ICP27 or ICP47. Infection of neurons in culture with these triple IE deletion mutants substantially enhanced cell survival and permitted transgene expression for over 21 days. Such mutants may prove useful for efficient gene transfer and extended transgene expression in neurons in vitro and in vivo.  (+info)

(2/3695) Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins.

The PML protein is associated to nuclear bodies (NBs) whose functions are as yet unknown. PML and two other NBs-associated proteins, Sp100 And ISG20 are directly induced by interferons (IFN). PML and Sp100 proteins are covalently linked to SUMO-1, and ubiquitin-like peptide. PML NBs are disorganized in acute promyelocytic leukemia and during several DNA virus infections. In particular, the HSV-1 ICP0 protein is known to delocalize PML from NBs. Thus, NBs could play an important role in oncogenesis, IFN response and viral infections. Here, we show that HSV-1 induced PML protein degradation without altering its mRNA level. This degradation was time- and multiplicity of infection-dependent. Sp100 protein was also degraded, while another SUMO-1 conjugated protein, RanGAP1 and the IFN-induced protein kinase PKR were not. The proteasome inhibitor MG132 abrogated the HSV-1-induced PML and Sp100 degradation and partially restored their NB-localization. HSV-1 induced PML and Sp100 degradation constitutes a new example of viral inactivation of IFN target gene products.  (+info)

(3/3695) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography.

We are developing quantitative assays to repeatedly and noninvasively image expression of reporter genes in living animals, using positron emission tomography (PET). We synthesized positron-emitting 8-[18F]fluoroganciclovir (FGCV) and demonstrated that this compound is a substrate for the herpes simplex virus 1 thymidine kinase enzyme (HSV1-TK). Using positron-emitting FGCV as a PET reporter probe, we imaged adenovirus-directed hepatic expression of the HSV1-tk reporter gene in living mice. There is a significant positive correlation between the percent injected dose of FGCV retained per gram of liver and the levels of hepatic HSV1-tk reporter gene expression (r2 > 0.80). Over a similar range of HSV1-tk expression in vivo, the percent injected dose retained per gram of liver was 0-23% for ganciclovir and 0-3% for FGCV. Repeated, noninvasive, and quantitative imaging of PET reporter gene expression should be a valuable tool for studies of human gene therapy, of organ/cell transplantation, and of both environmental and behavioral modulation of gene expression in transgenic mice.  (+info)

(4/3695) Characterization of the interaction between the herpes simplex virus type I Fc receptor and immunoglobulin G.

Herpes simplex virus type I (HSV-1) virions and HSV-1-infected cells bind to human immunoglobulin G (hIgG) via its Fc region. A complex of two surface glycoproteins encoded by HSV-1, gE and gI, is responsible for Fc binding. We have co-expressed soluble truncated forms of gE and gI in Chinese hamster ovary cells. Soluble gE-gI complexes can be purified from transfected cell supernatants using a purification scheme that is based upon the Fc receptor function of gE-gI. Using gel filtration and analytical ultracentrifugation, we determined that soluble gE-gI is a heterodimer composed of one molecule of gE and one molecule of gI and that gE-gI heterodimers bind hIgG with a 1:1 stoichiometry. Biosensor-based studies of the binding of wild type or mutant IgG proteins to soluble gE-gI indicate that histidine 435 at the CH2-CH3 domain interface of IgG is a critical residue for IgG binding to gE-gI. We observe many similarities between the characteristics of IgG binding by gE-gI and by rheumatoid factors and bacterial Fc receptors such as Staphylococcus aureus protein A. These observations support a model for the origin of some rheumatoid factors, in which they represent anti-idiotypic antibodies directed against antibodies to bacterial and viral Fc receptors.  (+info)

(5/3695) Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system.

After corneal infection, herpes simplex virus type 1 (HSV-1) invades sensory neurons with cell bodies in the trigeminal ganglion (TG), replicates briefly, and then establishes a latent infection in these neurons. HSV-1 replication in the TG can be detected as early as 2 days after corneal infection, reaches peak titers by 3-5 days after infection, and is undetectable by 7-10 days. During the period of HSV-1 replication, macrophages and gammadelta TCR+ T lymphocytes infiltrate the TG, and TNF-alpha, IFN-gamma, the inducible nitric oxide synthase (iNOS) enzyme, and IL-12 are expressed. TNF-alpha, IFN-gamma, and the iNOS product nitric oxide (NO) all inhibit HSV-1 replication in vitro. Macrophage and gammadelta TCR+ T cell depletion studies demonstrated that macrophages are the main source of TNF-alpha and iNOS, whereas gammadelta TCR+ T cells produce IFN-gamma. Macrophage depletion, aminoguanidine inhibition of iNOS, and neutralization of TNF-alpha or IFN-gamma all individually and synergistically increased HSV-1 titers in the TG after HSV-1 corneal infection. Moreover, individually depleting macrophages or neutralizing TNF-alpha or IFN-gamma markedly reduced the accumulation of both macrophages and gammadelta TCR+ T cells in the TG. Our findings establish that after primary HSV-1 infection, the bulk of virus replication in the sensory ganglia is controlled by macrophages and gammadelta TCR+ T lymphocytes through their production of antiviral molecules TNF-alpha, NO, and IFN-gamma. Our findings also strongly suggest that cross-regulation between these two cell types is necessary for their accumulation and function in the infected TG.  (+info)

(6/3695) The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells.

The herpes simplex virus type 1 (HSV-1) ICP27 protein is an immediate-early or alpha protein which is essential for the optimal expression of late genes as well as the synthesis of viral DNA in cultures of Vero cells. Our specific goal was to characterize the replication of a virus incapable of synthesizing ICP27 in cultured human cells. We found that infection with an HSV-1 ICP27 deletion virus of at least three separate strains of human cells did not produce immediate-early or late proteins at the levels observed following wild-type virus infections. Cell morphology, chromatin condensation, and genomic DNA fragmentation measurements demonstrated that the human cells died by apoptosis after infection with the ICP27 deletion virus. These features of the apoptosis were identical to those which occur during wild-type infections of human cells when total protein synthesis has been inhibited. Vero cells infected with the ICP27 deletion virus did not exhibit any of the features of apoptosis. Based on these results, we conclude that while HSV-1 infection likely induced apoptosis in all cells, viral evasion of the response differed among the cells tested in this study.  (+info)

(7/3695) Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions.

Herpes simplex virus type 1 virions were examined by electron cryomicroscopy, allowing the three-dimensional structure of the infectious particle to be visualized for the first time. The capsid shell is identical to that of B-capsids purified from the host cell nucleus, with the exception of the penton channel, which is closed. The double-stranded DNA genome is organized as regularly spaced ( approximately 26 A) concentric layers inside the capsid. This pattern suggests a spool model for DNA packaging, similar to that for some bacteriophages. The bulk of the tegument is not icosahedrally ordered. However, a small portion appears as filamentous structures around the pentons, interacting extensively with the capsid. Their locations and interactions suggest possible roles for the tegument proteins in regulating DNA transport through the penton channel and binding to cellular transport proteins during viral infection.  (+info)

(8/3695) Herpes simplex virus 1 blocks caspase-3-independent and caspase-dependent pathways to cell death.

Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type HSV blocks the execution of the cell death program triggered by viral gene products, by the effectors of the immune system such as the Fas and tumor necrosis factor pathways, or by nonspecific stress agents such as either osmotic shock induced by sorbitol or thermal shock. A report from this laboratory showed that caspase inhibitors do not block DNA fragmentation induced by infection with the HSV-1 d120 mutant. To identify the events in programmed cell death induced and blocked by HSV-1, we examined cells infected with wild-type virus or the d120 mutant or cells infected and exposed to sorbitol. We report that: (i) the HSV-1 d120 mutant induced apoptosis by a caspase-3-independent pathway inasmuch as caspase 3 was not activated and DNA fragmentation was not blocked by caspase inhibitors even though the virus caused cytochrome c release and depolarization of the inner mitochondrial membrane. (ii) Cells infected with wild-type HSV-1 exhibited none of the manifestations associated with programmed cell death assayed in these studies. (iii) Uninfected cells exposed to osmotic shock succumbed to caspase-dependent apoptosis inasmuch as cytochrome c was released, the inner mitochondrial potential was lost, caspase-3 was activated, and chromosomal DNA was fragmented. (iv) Although caspase-3 was activated in cells infected with wild-type HSV-1 and exposed to sorbitol, cytochrome c outflow, depolarization of the inner mitochondrial membrane, and DNA fragmentation were blocked. We conclude that although d120 induces apoptosis by a caspase-3-independent pathway, the wild-type virus blocks apoptosis induced by this pathway and also blocks the caspase-dependent pathway induced by osmotic shock. The block in the caspase-dependent pathway may occur downstream of caspase-3 activation.  (+info)