Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein-Barr virus. (9/2429)

Replication and maintenance of the 170-kb circular chromosome of Epstein-Barr virus (EBV) during latent infection are generally believed to depend upon a single viral gene product, the nuclear protein EBNA-1. EBNA-1 binds to two clusters of sites at oriP, an 1, 800-bp sequence on the EBV genome which can support replication and maintenance of artificial plasmids introduced into cell lines that contain EBNA-1. To investigate the importance of EBNA-1 to latent infection by EBV, we introduced a frameshift mutation into the EBNA-1 gene of EBV by recombination along with a flanking selectable marker. EBV genomes carrying the frameshift mutation could be isolated readily after superinfecting EBV-positive cell lines, but not if recombinant virus was used to infect EBV-negative B-cell lines or to immortalize peripheral blood B cells. EBV mutants lacking almost all of internal repeat 3, which encode a repetitive glycine and alanine domain of EBNA-1, were generated in the same way and found to immortalize B cells normally. An EBNA-1-deficient mutant of EBV was isolated and found to be incapable of establishing a latent infection of the cell line BL30 at a detectable frequency, indicating that the mutant was less than 1% as efficient as an isogenic, EBNA-1-positive strain in this assay. The data indicate that EBNA-1 is required for efficient and stable latent infection by EBV under the conditions tested. Evidence from other studies now indicates that autonomous maintenance of the EBV chromosome during latent infection does not depend on the replication initiation function of oriP. It is therefore likely that the viral chromosome maintenance (segregation) function of oriP and EBNA-1 is what is required.  (+info)

The equine herpesvirus 1 Us2 homolog encodes a nonessential membrane-associated virion component. (10/2429)

Experiments were conducted to analyze the equine herpesvirus 1 (EHV-1) gene 68 product which is encoded by the EHV-1 Us2 homolog. An antiserum directed against the amino-terminal 206 amino acids of the EHV-1 Us2 protein specifically detected a protein with an Mr of 34,000 in cells infected with EHV-1 strain RacL11. EHV-1 strain Ab4 encodes a 44,000-Mr Us2 protein, whereas vaccine strain RacH, a high-passage derivative of RacL11, encodes a 31,000-Mr Us2 polypeptide. Irrespective of its size, the Us2 protein was incorporated into virions. The EHV-1 Us2 protein localized to membrane and nuclear fractions of RacL11-infected cells and to the envelope fraction of purified virions. To monitor intracellular trafficking of the protein, the green fluorescent protein (GFP) was fused to the carboxy terminus of the EHV-1 Us2 protein or to a truncated Us2 protein lacking a stretch of 16 hydrophobic amino acids at the extreme amino terminus. Both fusion proteins were detected at the plasma membrane and accumulated in the vicinity of nuclei of transfected cells. However, trafficking of either GFP fusion protein through the secretory pathway could not be demonstrated, and the EHV-1 Us2 protein lacked detectable N- and O-linked carbohydrates. Consistent with the presence of the Us2 protein in the viral envelope and plasma membrane of infected cells, a Us2-negative RacL11 mutant (L11DeltaUs2) exhibited delayed penetration kinetics and produced smaller plaques compared with either wild-type RacL11 or a Us2-repaired virus. After infection of BALB/c mice with L11DeltaUs2, reduced pathogenicity compared with the parental RacL11 virus and the repaired virus was observed. It is concluded that the EHV-1 Us2 protein modulates virus entry and cell-to-cell spread and appears to support sustained EHV-1 replication in vivo.  (+info)

Amplification of the six major human herpesviruses from cerebrospinal fluid by a single PCR. (11/2429)

We used a novel type of primer system, a system that uses stair primers, in which the primer sequences are based on consensus sequences in the DNA polymerase gene of herpesvirus to detect herpesviruses by PCR. A single PCR in a single tube detected the six major herpesviruses that infect the central nervous system: herpes simplex virus type 1 (HSV-1), and type 2 (HSV-2), cytomegalovirus (CMV), Epstein-Barr virus (EBV), varicella-zoster virus (VZV), and human herpesvirus 6 (HHV-6). We used the technique to analyze 142 cerebrospinal fluid (CSF) samples that had been stored at -80 degrees C and compared the results with those obtained previously for the same samples by standard, targeted PCR. Four hundred one targeted PCR tests had been run with the 142 samples to detect HSV-1, HSV-2, CMV, and VZV; screening for EBV and HHV-6 was not prescribed when the samples were initially taken. Eighteen CSF samples tested positive by classic targeted PCR. The herpesvirus consensus PCR detected herpesviruses in 37 samples, including 3 samples with coinfections and 17 viral isolates which were not targeted. Two samples identified as infected by the targeted PCR tested negative by the consensus PCR, and eight samples that tested positive by the consensus PCR were negative by the targeted PCR. One hundred three samples scored negative by both the targeted and the consensus PCRs. This preliminary study demonstrates the value of testing for six different herpesviruses simultaneously by a sensitive and straightforward technique rather than screening only for those viruses that are causing infections as suggested by clinical signs.  (+info)

Human herpesvirus 8 seroprevalence and evaluation of nonsexual transmission routes by detection of DNA in clinical specimens from human immunodeficiency virus-seronegative patients from central and southern Italy, with and without Kaposi's sarcoma. (12/2429)

In order to investigate the seroprevalence of human herpesvirus 8 (HHV-8) infection in central and southern Italy, sera from human immunodeficiency virus (HIV)-seronegative subjects, with and without Kaposi's sarcoma (KS), were analyzed by immunofluorescence assay, using BC-3, a cell line latently infected with HHV-8. High titers of antibody against HHV-8 lytic and latent antigens were detected in all 50 KS patients studied, while in 50 HIV-seronegative subjects without KS, 32 (64%) were found positive for HHV-8 antibodies. Titers in the sera of these patients were lower than those for KS patients. This data suggests that HHV-8 infection is not restricted to KS patients and that the prevalence of HHV-8 infection in the general population may be correlated with differing rates of prevalence of KS in different parts of the world. In view of these findings, possible nonsexual transmission routes were evaluated. Nested PCR was used to test for the presence of HHV-8 DNA in saliva, urine, and tonsillar swabs from KS and non-KS patients. In KS patients, 14 out of 32 tonsillar swabs (43.7%), 11 out of 24 saliva samples (45.8%), and just 2 out of 24 urine samples (8.3%) tested positive for HHV-8 DNA. In the control group, on the contrary, none of the 20 saliva and 20 urine specimens was positive for HHV-8 DNA; only 1 out of 22 tonsillar swabs gave a positive result. This data supports the hypothesis that HHV-8 infects the general population in a latent form. The reactivation of viral infection may result in salivary shedding of HHV-8, contributing to viral spread by nonsexual transmission routes.  (+info)

Human herpesvirus 8 in hematologic diseases. (13/2429)

Human herpesvirus type 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV) is a new member of the g-herpesvirus family. It is an unusual herpesvirus in that it carries a large number of genes that encode oncoproteins or cell signaling proteins. In addition to being the causative agent of both HIV-associated and non-HIV-associated Kaposi's sarcoma this DNA tumor virus has been implicated in the pathogenesis of several diseases. These include multiple myeloma (MM), Waldenstom's macroglobulinemia (WM), multicentric Castleman's disease (MCD), body cavity-based lymphoma (BCBL), and various other conditions such as sarcoidosis and pemphigus. While the causative role of the viral infection is fairly certain in the development of BCBL and multicentric Castleman's disease, HHV-8 may act through a different mechanism to induce plasma cell malignancies. It has been suggested though the finding is still controversial - that infection of bone marrow stromal dendritic cells by HHV-8 might be a key factor in the etiology and pathogenesis of monoclonal gammopathies. The aim of this review is to provide a short introduction into the tumorigenic potential of HHV-8 as well as to detail the available data and possible mechanisms on the involvement of this virus in different hematologic diseases.  (+info)

Anti-herpes simplex virus activity of moronic acid purified from Rhus javanica in vitro and in vivo. (14/2429)

Rhus javanica, a medicinal herb, has been shown to exhibit oral therapeutic anti-herpes simplex virus (HSV) activity in mice. We purified two major anti-HSV compounds, moronic acid and betulonic acid, from the herbal extract by extraction with ethyl acetate at pH 10 followed by chromatographic separations and examined their anti-HSV activity in vitro and in vivo. Moronic acid was quantitatively a major anti-HSV compound in the ethyl acetate-soluble fraction. The effective concentrations for 50% plaque reduction of moronic acid and betulonic acid for wild-type HSV type 1 (HSV-1) were 3.9 and 2.6 microgram/ml, respectively. The therapeutic index of moronic acid (10.3-16.3) was larger than that of betulonic acid (6.2). Susceptibility of acyclovir-phosphonoacetic acid-resistant HSV-1, thymidine kinase-deficient HSV-1, and wild-type HSV type 2 to moronic acid was similar to that of the wild-type HSV-1. When this compound was administered orally to mice infected cutaneously with HSV-1 three times daily, it significantly retarded the development of skin lesions and/or prolonged the mean survival times of infected mice without toxicity compared with the control. Moronic acid suppressed virus yields in the brain more efficiently than those in the skin. This was consistent with the prolongation of mean survival times. Thus, moronic acid was purified as a major anti-HSV compound from the herbal extract of Rhus javanica. Mode of the anti-HSV activity was different from that of ACV. Moronic acid showed oral therapeutic efficacy in HSV-infected mice and possessed novel anti-HSV activity that was consistent with that of the extract.  (+info)

Endogenous glucocorticoids protect against cytokine-mediated lethality during viral infection. (15/2429)

Certain cytokines activate the hypothalamic-pituitary-adrenal axis for glucocorticoid release, and these hormones can protect against cytokine-mediated pathologies. However, endogenous activation of such a pathway has not been established during infections. A prominent glucocorticoid response peaks 36 h following murine CMV (MCMV) infection, coincident with circulating levels of the cytokines IL-12, IFN-gamma, TNF, and IL-6, and dependent on IL-6 for maximal release. These studies examined functions of the hormone induction. Mice rendered glucocorticoid deficient by adrenalectomy were more susceptible than intact mice to MCMV-induced lethality, and the increased sensitivity was reversed by hormone replacement. Lack of endogenous glucocorticoids resulted in increases in IL-12, IFN-gamma, TNF, and IL-6 production, as well as in mRNA expression for a wider range of cytokines, also including IL-1 alpha and IL-1 beta. Viral burdens did not increase, and actually decreased, in the livers of glucocorticoid-deficient mice. TNF, but not IFN-gamma, was required for increased lethality in the absence of endogenous hormone. These results conclusively demonstrate the importance of induced endogenous glucocorticoids in protection against life-threatening effects resulting from infection-elicited cytokine responses. Taken together with the dependence on induced IL-6, they document existence of an immune system-hypothalamic-pituitary-adrenal axis pathway for regulating endogenous responses to viral infections.  (+info)

Epstein-Barr virus related hemophagocytic syndrome in a T-cell rich B-cell lymphoma. (16/2429)

We report the case of a 30-year-old woman who presented with an EBV related hemophagocytic syndrome. After a few months she developed a T-cell rich B-cell non-Hodgkin's lymphoma with liver involvement. Serological data demonstrated a reactivation of the EBV infection. Tumor progression with liver involvement occurred during treatment with conventional chemotherapy. Tumor reduction and disappearance of all masses was seen after starting high-dose sequential chemotherapy, followed by an autologous peripheral blood progenitor transplantation LMP-1 could be amplified in the tumor material by PCR technology, but no LMP-1 expression could be found in the few malignant B-cells with Reed-Sternberg morphology. Sequence analysis of the carboxy terminal of the LMP-1 region revealed the naturally occurring 30 bp deletion variant of the LMP-1 with multiple point mutations within the NF kb region. Since LMP-1 was not expressed in the malignant tumor cells, no evidence could be found, that EBV participated in the tumorigenesis of this case.  (+info)