Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. (1/64)

Although a wide range of structurally diverse small molecules can act as auxins, it is unclear whether all of these compounds act via the same mechanisms that have been characterized for 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetic acid (IAA). To address this question, we used a novel member of the picolinate class of synthetic auxins that is structurally distinct from 2,4-D to screen for Arabidopsis (Arabidopsis thaliana) mutants that show chemically selective auxin resistance. We identified seven alleles at two distinct genetic loci that conferred significant resistance to picolinate auxins such as picloram, yet had minimal cross-resistance to 2,4-D or IAA. Double mutants had the same level and selectivity of resistance as single mutants. The sites of the mutations were identified by positional mapping as At4g11260 and At5g49980. At5g49980 is previously uncharacterized and encodes auxin signaling F-box protein 5, one of five homologs of TIR1 in the Arabidopsis genome. TIR1 is the recognition component of the Skp1-cullin-F-box complex associated with the ubiquitin-proteasome pathway involved in auxin signaling and has recently been shown to be a receptor for IAA and 2,4-D. At4g11260 encodes the tetratricopeptide protein SGT1b that has also been associated with Skp1-cullin-F-box-mediated ubiquitination in auxin signaling and other pathways. Complementation of mutant lines with their corresponding wild-type genes restored picolinate auxin sensitivity. These results show that chemical specificity in auxin signaling can be conferred by upstream components of the auxin response pathway. They also demonstrate the utility of genetic screens using structurally diverse chemistries to uncover novel pathway components.  (+info)

Molecular analysis, cytogenetics and fertility of introgression lines from transgenic wheat to Aegilops cylindrica host. (2/64)

Natural hybridization and backcrossing between Aegilops cylindrica and Triticum aestivum can lead to introgression of wheat DNA into the wild species. Hybrids between Ae. cylindrica and wheat lines bearing herbicide resistance (bar), reporter (gus), fungal disease resistance (kp4), and increased insect tolerance (gna) transgenes were produced by pollination of emasculated Ae. cylindrica plants. F1 hybrids were backcrossed to Ae. cylindrica under open-pollination conditions, and first backcrosses were selfed using pollen bags. Female fertility of F1 ranged from 0.03 to 0.6%. Eighteen percent of the sown BC1s germinated and flowered. Chromosome numbers ranged from 30 to 84 and several of the plants bore wheat-specific sequence-characterized amplified regions (SCARs) and the bar gene. Self fertility in two BC1 plants was 0.16 and 5.21%, and the others were completely self-sterile. Among 19 BC1S1 individuals one plant was transgenic, had 43 chromosomes, contained the bar gene, and survived glufosinate treatments. The other BC1S1 plants had between 28 and 31 chromosomes, and several of them carried SCARs specific to wheat A and D genomes. Fertility of these plants was higher under open-pollination conditions than by selfing and did not necessarily correlate with even or euploid chromosome number. Some individuals having supernumerary wheat chromosomes recovered full fertility.  (+info)

Effects of genetically modified herbicide-tolerant cropping systems on weed seedbanks in two years of following crops. (3/64)

The Farm Scale Evaluations (FSEs) showed that genetically modified herbicide-tolerant (GMHT) cropping systems could influence farmland biodiversity because of their effects on weed biomass and seed production. Recently published results for winter oilseed rape showed that a switch to GMHT crops significantly affected weed seedbanks for at least 2 years after the crops were sown, potentially causing longer-term effects on other taxa. Here, we seek evidence for similar medium-term effects on weed seedbanks following spring-sown GMHT crops, using newly available data from the FSEs. Weed seedbanks following GMHT maize were significantly higher than following conventional varieties for both the first and second years, while by contrast, seedbanks following GMHT spring oilseed rape were significantly lower over this period. Seedbanks following GMHT beet were smaller than following conventional crops in the first year after the crops had been sown, but this difference was much reduced by the second year for reasons that are not clear. These new data provide important empirical evidence for longer-term effects of GMHT cropping on farmland biodiversity.  (+info)

Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. (4/64)

The occurrence of transgenic herbicide-resistant oilseed rape (Brassica napus) in ruderal (non-crop disturbed) areas has not been investigated previously in Canada. The primary objective of this study was to document their occurrence in two main ruderal areas (along railways and roads) in the province of Saskatchewan, where half of all oilseed rape is grown, and at the port of Vancouver, British Columbia on the west coast of Canada, where most oilseed rape destined for export is transported by rail. During the 2005 growing season, leaf samples of oilseed rape plants were collected at randomly-selected sites along railways and roads across Saskatchewan ecoregions and at Vancouver; infestation area, density, and plant height of oilseed rape were measured at each site. The presence of the glyphosate and glufosinate resistance traits was determined using test strips. The infestation area of oilseed rape, averaged across 155 sampled sites in the Saskatchewan survey, was markedly smaller in populations along railways than roads; in contrast, infestation area averaged across 54 sites in the Vancouver survey was greater for populations along railways than roads. In both surveys, mean plant density was greater for populations found along railways than roads. Two-thirds of oilseed rape plants sampled across Saskatchewan ecoregions and at Vancouver were transgenic, although the relative proportion of plants with the glyphosate or glufosinate resistance trait varied between surveys. Frequency of occurrence of transgenic plants in ruderal areas was similar to the proportion of the oilseed rape area planted with transgenic cultivars in the recent preceding years. A single transgenic B. rapa x B. napus hybrid was found along a road in Vancouver, confirming the relatively high probability of hybridization between these two Brassica species. With current control measures, transgenic oilseed rape populations may persist and spread in these ruderal areas.  (+info)

Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan. (5/64)

Repeated monitoring for escaped transgenic crop plants is sometimes necessary, especially in cases when the crop has not been approved for release into the environment. Transgenic oilseed rape (Brassica napus) was detected along roadsides in central Japan in a previous study. The goal of the current study was to monitor the distribution of transgenic oilseed rape and occurrence of hybridization of transgenic B. napus with feral populations of its closely related species (B. rapa and B. juncea) in the west of Japan in 2005. The progenies of 50 B. napus, 82 B. rapa and 283 B. juncea maternal plants from 95 sampling sites in seven port areas were screened for herbicide-resistance. Transgenic herbicide-resistant seeds were detected from 12 B. napus maternal plants growing at seven sampling sites in two port areas. A portion of the progeny from two transgenic B. napus plants had both glyphosate-resistance and glufosinate-resistance transgenes. Therefore, two types of transgenic B. napus plants are likely to have outcrossed with each other, since the double-herbicide-resistant transgenic strain of oilseed rape has not been developed intentionally for commercial purposes. As found in the previous study, no transgenic seeds were detected from B. rapa or B. juncea, and more extensive sampling is needed to determine whether introgression into these wild species has occurred.  (+info)

Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. (6/64)

Grass weed populations resistant to aryloxyphenoxypropionate (APP) and cyclohexanedione herbicides that inhibit acetyl-CoA carboxylase (ACCase; EC represent a major problem for sustainable agriculture. We investigated the molecular basis of resistance to ACCase-inhibiting herbicides for nine wild oat (Avena sterilis ssp. ludoviciana Durieu) populations from the northern grain-growing region of Australia. Five amino acid substitutions in plastid ACCase were correlated with herbicide resistance: Ile-1,781-Leu, Trp-1,999-Cys, Trp-2,027-Cys, Ile-2,041-Asn, and Asp-2,078-Gly (numbered according to the Alopecurus myosuroides plastid ACCase). An allele-specific PCR test was designed to determine the prevalence of these five mutations in wild oat populations suspected of harboring ACCase-related resistance with the result that, in most but not all cases, plant resistance was correlated with one (and only one) of the five mutations. We then showed, using a yeast gene-replacement system, that these single-site mutations also confer herbicide resistance to wheat plastid ACCase: Ile-1,781-Leu and Asp-2,078-Gly confer resistance to APPs and cyclohexanediones, Trp-2,027-Cys and Ile-2,041-Asn confer resistance to APPs, and Trp-1,999-Cys confers resistance only to fenoxaprop. These mutations are very likely to confer resistance to any grass weed species under selection imposed by the extensive agricultural use of the herbicides.  (+info)

Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan. (7/64)

Natural out-crossing rates were evaluated for conventional soybeans (Glycine max (L.) Merr.) cultivated adjacent to genetically modified (GM) glyphosate-tolerant soybeans under field conditions during a four-year period in Japan. A total of 107 846 progeny of 2772 plants harvested from conventional varieties were screened for glyphosate herbicide tolerance. The highest out-crossing rates, 0.19% in 2001 and 0.16% in 2002, were observed in adjacent rows 0.7 m from the pollen source. The highest rate in 2004 was 0.052%, which was observed at 2.1 m. No out-crossing was observed in the rows 10.5 m from the pollen source over the four-year period. The farthest distances between receptor and pollen source at which out-crossing was observed were 7 m in 2001, 2.8 m in 2002, and 3.5 m in 2004. The greatest airborne pollen density during the flowering period, determined by Durham pollen samplers located between the rows of each variety, was 0.368, with the average value at 0.18, indicating that the possibility of out-crossing by wind is minimal. Thrips species and predatory Hemiptera visited the soybean flowers more frequently during the four-year period than any other common pollinators, such as bees.  (+info)

Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. (8/64)

We grew plants of nine soybean varieties, six of which were genetically modified to express transgenic cp4-epsps, in the presence of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi. Mycorrhizal colonization and nodule abundance and mass differed among soybean varieties; however, in no case was variation significantly associated with the genetic modification.  (+info)