Electrical coupling between cells of the insect Aedes albopictus. (41/97)

1. Cell pairs of an insect cell line (Aedes albopictus, clone C6/36) were used to study the electrical properties of intercellular junctions. A double voltage-clamp approach was adopted to control the voltage gradient between the cells and measure the intracellular current flow. 2. Determinations of junctional conductance (gj) revealed two types of intercellular contacts, gap junctions and cytoplasmic bridges. Identification occurred by means of functional criteria, i.e. the dependency of gj on (i) junctional membrane potential, (ii) non-junctional membrane potential, and (iii) heptanol. 3. In cell pairs with putative gap junctions, gj was dependent on the junctional membrane potential (Vj). When determined at the beginning of voltage pulses, gj was insensitive to Vj; when determined at the end of 15 s pulses, it depended on Vj in a bell-shaped manner (70% decrease for a change in Vj of +/- 75 mV). 4. These cell pairs also showed a dependency of gj on the non-junctional membrane potential (Vm). When determined immediately after changing the non-junctional membrane potential in both cells, gj was not affected by Vm; when determined 30 s later, gj was modified by Vm in a S-shaped fashion (100% decrease when Vm was depolarized to +50 mV). 5. Exposure to 3 mM-heptanol gave rise to complete and reversible block of gj in cell pairs with putative gap junctions. 6. Cell pairs susceptible to uncoupling by heptanol revealed junctional currents indicative of the operation of gap junction channels. The single-channel conductance, determined at a Vm of -50 to -70 mV, was 133 pS. 7. In the case of putative cytoplasmic bridges, gj was insensitive to the junctional and non-junctional membrane potential. In addition, it was not affected by 3 mM-heptanol. 8. While most cell pairs showed functional properties characteristic of gap junctions or cytoplasmic bridges, few cell pairs exhibited junctional currents compatible with the co-existence of both junctional structures.  (+info)

Protective effect of gap junction uncouplers given during hypoxia against reoxygenation injury in isolated rat hearts. (42/97)

It has been shown that cell-to-cell chemical coupling may persist during severe myocardial hypoxia or ischemia. We aimed to analyze the effects of different, chemically unrelated gap junction uncouplers on the progression of ischemic injury in hypoxic myocardium. First, we analyzed the effects of heptanol, 18alpha-glycyrrhetinic acid, and palmitoleic acid on intracellular Ca2+ concentration during simulated hypoxia (2 mM NaCN) in isolated cardiomyocytes. Next, we analyzed their effects on developed and diastolic tension and electrical impedance in 47 isolated rat hearts submitted to 40 min of hypoxia and reoxygenation. All treatments were applied only during the hypoxic period. Cell injury was determined by lactate dehydrogenase (LDH) release. Heptanol, but not 18alpha-glycyrrhetinic acid nor palmitoleic acid, attenuated the increase in cytosolic Ca2+ concentration induced by simulated ischemia in cardiomyocytes and delayed rigor development (rigor onset at 7.31 +/- 0.71 min in controls vs. 14.76 +/- 1.44 in heptanol-treated hearts, P < 0.001) and the onset of the marked changes in electrical impedance (tissue resistivity: 4.02 +/- 0.29 vs. 7.75 +/- 1.84 min, P = 0.016) in hypoxic rat hearts. LDH release from hypoxic hearts was minimal and was not significantly modified by drugs. However, all gap junction uncouplers, given during hypoxia, attenuated LDH release during subsequent reoxygenation. Dose-response analysis showed that increasing heptanol concentration beyond the level associated with maximal effects on cell coupling resulted in further protection against hypoxic injury. In conclusion, gap junction uncoupling during hypoxia has a protective effect on cell death occurring upon subsequent reoxygenation, and heptanol has, in addition, a marked protective effect independent of its uncoupling actions.  (+info)

The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response. (43/97)

The concentrations of two structurally distinct membrane fluidizers, the local anesthetic benzyl alcohol (BA) and heptanol (HE), were used at concentrations so that their addition to K562 cells caused identical increases in the level of plasma membrane fluidity as tested by 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy. The level of membrane fluidization induced by the chemical agents on isolated membranes at such concentrations corresponded to the membrane fluidity increase seen during a thermal shift up to 42 degrees C. The formation of isofluid membrane states in response to the administration of BA or HE resulted in almost identical downshifts in the temperature thresholds of the heat shock response, accompanied by increases in the expression of genes for stress proteins such as heat shock protein (HSP)-70 at the physiological temperature. Similarly to thermal stress, the exposure of the cells to these membrane fluidizers elicited nearly identical increases of cytosolic Ca2+ concentration in both Ca2+-containing and Ca2+-free media and also closely similar extents of increase in mitochondrial hyperpolarization. We obtained no evidence that the activation of heat shock protein expression by membrane fluidizers is induced by a protein-unfolding signal. We suggest, that the increase of fluidity in specific membrane domains, together with subsequent alterations in key cellular events are converted into signal(s) leading to activation of heat shock genes.  (+info)

Gap junction-mediated intercellular communication between dendritic cells (DCs) is required for effective activation of DCs. (44/97)

Gap junctions, formed by members of the connexin (Cx) family, are intercellular channels allowing direct exchange of signaling molecules. Gap junction-mediated intercellular communication (GJIC) is a widespread mechanism for homeostasis in organs. GJIC in the immune system is not yet fully understood. Although dendritic cells (DC) reportedly form cell-to-cell contact between DCs in nonlymphoid and lymphoid organs, GJIC between DCs remains unknown. In this study we examined whether DCs form GJIC. XS52 and bone marrow-derived DCs (BMDCs) were tested for GJIC by counting intercellular transfer of Lucifer Yellow microinjected into a cell. Either DC became effectively dye-coupled when activated with LPS plus IFN-gamma or TNF-alpha plus IFN-gamma. LPS- plus IFN-gamma-induced dye-coupling was mediated by DC-derived TNF-alpha. In addition, CpG plus IFN-gamma induced dye-coupling in BMDCs, which was also mediated by DC-derived TNF-alpha. LPS- plus IFN-gamma-induced activation of DCs (assessed by CD40 expression) was observed when there was cell-to-cell contact and was significantly blocked by heptanol, a gap junction blocker. These results indicate that cell-to-cell contact and GJIC are required for effective DC activation. In addition, heptanol significantly inhibited the LPS- plus IFN-gamma-induced up-regulation of the other costimulatory (i.e., CD80 and CD86) and MHC class II molecules expressed by BMDCs, and it significantly reduced their allostimulatory capacity. Among Cx members, Cx43 was up-regulated in dye-coupled BMDCs, and Cx mimetic peptide, a blocker of Cx-mediated GJIC, significantly inhibited the dye-coupling and activation, suggesting the involvement of Cx43. Thus, our study provides the first evidence for GJIC between DCs, which is required for effective DC activation.  (+info)

Heterogeneous response of microvascular endothelial cells to shear stress. (45/97)

We investigated changes in calcium concentration in cultured bovine aortic endothelial cells (BAECs) and rat adrenomedulary endothelial cells (RAMECs, microvascular) in response to different levels of shear stress. In BAECs, the onset of shear stress elicited a transient increase in intracellular calcium concentration that was spatially uniform, synchronous, and dose dependent. In contrast, the response of RAMECs was heterogeneous in time and space. Shear stress induced calcium waves that originated from one or several cells and propagated to neighboring cells. The number and size of the responding groups of cells did not depend on the magnitude of shear stress or the magnitude of the calcium change in the responding cells. The initiation and the propagation of calcium waves in RAMECs were significantly suppressed under conditions in which either purinergic receptors were blocked by suramin or extracellular ATP was degraded by apyrase. Exogenously applied ATP produced similarly heterogeneous responses. The number of responding cells was dependent on ATP concentration, but the magnitude of the calcium change was not. Our data suggest that shear stress stimulates RAMECs to release ATP, causing the increase in intracellular calcium concentration via purinergic receptors in cells that are heterogeneously sensitive to ATP. The propagation of the calcium signal is also mediated by ATP, and the spatial pattern suggests a locally elevated ATP concentration in the vicinity of the initially responding cells.  (+info)

Pathophysiological basis for monitoring of whole heart conductance by 2-lead system. (46/97)

BACKGROUND: The defibrillation threshold (DFT) is elevated during myocardial ischemia, but the underlying mechanism remains to be elucidated. The hypothesis tested by the present study was that whole heart conductance (WHC) is a determinant of DFT. METHODS AND RESULTS: WHC was monitored across the longest diameter of the isolated perfused rat heart, using a 2-electrode instrument under various conditions including ischemia-reperfusion (IR). In the control study, WHC was influenced by the conductivity and flow rate of the solution. In IR, WHC decreased immediately after the onset of perfusion arrest in a single exponential manner, then declined again gradually. The second decrease was augmented and accelerated by pretreatment with 1.0 mmol/L heptanol (p<0.005) or high-[Ca2+]e (p<0.001), and was attenuated and delayed by pretreatment with 1.0 micromol/L verapamil (p<0.01). WHC after reperfusion was greater than the pre ischemic level. The postischemic increase in WHC was proportional to the ischemic interval and tissue water content as assessed by desiccation method. CONCLUSION: Although time-dependent alterations in DFT in ischemic hearts may be attributable at least in part to dynamic changes in WHC, WHC should be interpreted carefully because it reflects many physiological factors such as coronary perfusion, electrical coupling of cardiac myocytes and tissue edema.  (+info)

Effect of heptanol on noradrenaline-induced contractions in rat vas deferens. (47/97)

We have studied the effects of 1-heptanol and nifedipine on noradrenaline (NA)-induced contractions in order to explore the role of gap junctions and their interactions with L-type Ca2+ channel mediated [Ca2+]o entry in the generation of NA-induced contractions in the rat vas deferens. Application of 20 microM NA to rat vas deferens resulted in contractions with three different components, an initial phasic component followed by a tonic component overlapped with an oscillatory component. Heptanol (0.01-2 mM) induced a concentration dependent reduction of the contractions. 2 mM heptanol reduced the phasic component by 32.9 +/- 4.4% and the tonic component by 93.8 +/- 1.9% of control, while the oscillatory component was completely abolished (n=7). Nifedipine (2 microM) reduced the phasic component by 34.5 +/- 4.1% and the tonic component by 89.5 +/- 3.8% of control and abolished the oscillatory component (n=6). In the presence of heptanol and nifedipine together, the phasic component was reduced by 61.3 +/- 8.3% and the tonic component by 94.5 +/- 1.0% of control. The oscillatory component was completely abolished (n=6). These results allow the conclusion that phasic contraction is mainly due to the direct action of NA, independent of gap junctions, while the tonic and oscillatory contractions may depend significantly on cell-to-cell communication. These in turn may depend critically on the availability of extracellularly derived Ca2+.  (+info)

Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. (48/97)

To determine whether insulin secretion is affected by a blockage of gap junctions between B cells, we have studied the secretion of rat pancreatic islets of Langerhans, primary dispersed islet cells, and cells of the RINm5F line, during short-term exposure to heptanol. Within minutes, this alkanol blocked gap junctions between the B cells of intact islets and abolished their normal secretory response to glucose. These two changes were rapidly and fully reversible after return of the islets to control medium. We further found that heptanol had no significant effect on the glucose-stimulated secretion of single B cells but inhibited that of B cell pairs. In the clone of RINm5F cells, whose junctional coupling and D-glyceraldehyde-induced stimulation of insulin release by aggregated cells were also inhibited by heptanol, this alkanol did not perturb intracellular pH and Ca2+ and the most distal steps of the secretion pathway. In summary, a gap junction blocker affected the secretion of insulin-producing cells by a mechanism which is dependent on cell contact and is not associated with detectable pleiotropic perturbations of the cell secretory machinery. The data provide evidence for the involvement of junctional coupling in the control of insulin secretion.  (+info)