Megalin (gp330) is an endocytic receptor for thyroglobulin on cultured fisher rat thyroid cells. (49/6896)

We recently reported that megalin (gp330), an endocytic receptor found on the apical surface of thyroid cells, binds thyroglobulin (Tg) with high affinity in solid phase assays. Megalin-bound Tg was releasable by heparin. Here we show that Fisher rat thyroid (FRTL-5) cells, a differentiated rat thyroid cell line, can bind and endocytose Tg via megalin. We first demonstrated that FRTL-5 cells express megalin in a thyroid-stimulating hormone-dependent manner. Evidence of Tg binding to megalin on FRTL-5 cells and on an immortalized rat renal proximal tubule cell line (IRPT cells), was obtained by incubating the cells with 125I-Tg, followed by chemical cross-linking and immunoprecipitation of 125I-Tg with antibodies against megalin. To investigate cell binding further, we developed an assay in which cells were incubated with unlabeled Tg at 4 degrees C, followed by incubation with heparin, which released almost all of the cell-bound Tg into the medium. In solid phase experiments designed to illuminate the mechanism of heparin release, we demonstrated that Tg is a heparin-binding protein, as are several megalin ligands. The amount of Tg released by heparin from FRTL-5 and IRPT cells, measured by enzyme-linked immunosorbent assay (ELISA), was markedly reduced by two megalin competitors, receptor-associated protein (RAP) and 1H2 (monoclonal antibody against megalin), indicating that much of the Tg released by heparin had been bound to megalin ( approximately 60-80%). The amount inhibited by RAP was considered to represent specific binding to megalin, which was saturable and of high affinity (Kd approximately 11.2 nM). Tg endocytosis by FRTL-5 and IRPT cells was demonstrated in experiments in which cells were incubated with unlabeled Tg at 37 degrees C, followed by heparin to remove cell-bound Tg. The amount of Tg internalized (measured by ELISA in the cell lysates) was reduced by RAP and 1H2, indicating that Tg endocytosis is partially mediated by megalin.  (+info)

Accelerated filament formation from tau protein with specific FTDP-17 missense mutations. (50/6896)

Tau is the major component of the neurofibrillar tangles that are a pathological hallmark of Alzheimers' disease. The identification of missense and splicing mutations in tau associated with the inherited frontotemporal dementia and Parkinsonism linked to chromosome 17 demonstrated that tau dysfunction can cause neurodegeneration. However, the mechanism by which tau dysfunction leads to neurodegeneration remains uncertain. Here, we present evidence that frontotemporal dementia and Parkinsonism linked to chromosome 17 missense mutations, P301L, V337M and R406W, cause an accelerated aggregation of tau into filaments. These results suggest one mechanism by which these mutations can cause neurodegeneration and frontotemporal dementia and Parkinsonism linked to chromosome 17.  (+info)

IgA interaction with carboxy-terminal 43-kD fragment of fibronectin in IgA nephropathy. (51/6896)

IgA deposition in the glomerular mesangial matrix is a prerequisite for the diagnosis of IgA nephropathy, and circulating IgA-containing complex has been implicated in this process. Since fibronectin is known to be involved in the assembly of extracellular matrix, this study was conducted to investigate whether fibronectin and its fragments are present in sera of patients and are capable of binding IgA1. Sera from patients with IgA nephropathy were purified by heparin-affinity chromatography, and column eluate were analyzed for the presence of fibronectin using Western blot and a set of anti-fibronectin monoclonal antibodies. Native fibronectin was digested with cathepsin D to obtain fragments similar to those of serum fibronectin. The capacity of fibronectin to bind IgA was examined with a mixture of purified IgA1 and cathepsin D-digested fibronectin fragments. A 43-kD carboxy-terminal fragment of fibronectin was detected in samples derived from sera of patients with IgA nephropathy but not in healthy control subjects. A similar-sized fragment was generated by cathepsin D digestion of the native molecule and was shown to bind to IgA1 in vitro. Since the carboxy-terminal domain is known to be critical in assembling exogenous fibronectin into the extracellular matrix, the affinity to IgA1 to a fragment found in patients may have pathogenic potential to mediate extracellular IgA deposition in IgA nephropathy.  (+info)

Sequence analysis of heparan sulphate and heparin oligosaccharides. (52/6896)

The biological activity of heparan sulphate (HS) and heparin largely depends on internal oligosaccharide sequences that provide specific binding sites for an extensive range of proteins. Identification of such structures is crucial for the complete understanding of glycosaminoglycan (GAG)-protein interactions. We describe here a simple method of sequence analysis relying on the specific tagging of the sugar reducing end by 3H radiolabelling, the combination of chemical scission and specific enzymic digestion to generate intermediate fragments, and the analysis of the generated products by strong-anion-exchange HPLC. We present full sequence data on microgram quantities of four unknown oligosaccharides (three HS-derived hexasaccharides and one heparin-derived octasaccharide) which illustrate the utility and relative simplicity of the technique. The results clearly show that it is also possible to read sequences of inhomogeneous preparations. Application of this technique to biologically active oligosaccharides should accelerate progress in the understanding of HS and heparin structure-function relationships and provide new insights into the primary structure of these polysaccharides.  (+info)

Structure of heparin-derived tetrasaccharide complexed to the plasma protein antithrombin derived from NOEs, J-couplings and chemical shifts. (53/6896)

A complex of the synthetic tetrasaccharide AGA*IM [GlcN, 6-SO3-alpha(1-4)-GlcA-beta(1-4)-GlcN,3, 6-SO3-alpha(1-4)-IdoA-alphaOMe] and the plasma protein antithrombin has been studied by NMR spectroscopy. 1H and 13C chemical shifts, three-bond proton-proton (3JH-H) and one-bond proton-carbon coupling constants (1JC-H) as well as transferred NOEs and rotating frame Overhauser effects (ROEs) were monitored as a function of the protein : ligand molar ratio and temperature. Considerable changes were observed at both 20 : 1 and 10 : 1 ratios (AGA*IM : antithrombin) in 1H as well as 13C chemical shifts. The largest changes in 1H chemical shifts, and the linewidths, were found for proton resonances (A1, A2, A6, A6', A1*, A2*, A3*, A4*) in GlcN, 6-SO3 and GlcN,3,6-SO3 units, indicating that both glucosamine residues are strongly involved in the binding process. The changes in the linewidths in the IdoA residue were considerably smaller than those in other residues, suggesting that the IdoA unit experienced different internal dynamics during the binding process. This observation was supported by measurements of 3JH-H and 1JC-H. The magnitude of the three-bond proton-proton couplings (3JH1-H2 = 2.51 Hz and 3JH4-H5 = 2.23 Hz) indicate that in the free state an equilibrium exists between 1C4 and 2S0 conformers in the ratio of approximately 75 : 25. The chair form appears the more favourable in the presence of antithrombin, as inferred from the magnitude of the coupling constants. In addition, two-dimensional NOESY and ROESY experiments in the free ligand, as well as transferred NOESY and ROESY spectra of the complex, were measured and interpreted using full relaxation and conformational exchange matrix analysis. The theoretical NOEs were computed using the geometry of the tetrasaccharide found in a Monte Carlo conformational search, and the three-dimensional structures of AGA*IM in both free and bound forms were derived. All monitored NMR variables, 1H and 13C chemical shifts, 1JC-H couplings and transferred NOEs, indicated that the changes in conformation at the glycosidic linkage GlcN, 6-SO3-alpha(1-4)-GlcA were induced by the presence of antithrombin and suggested that the receptor selected a conformer different from that in the free state. Such changes are compatible with the two-step model [Desai, U.R., Petitou, M., Bjork, I. & Olson, S. (1998) J. Biol. Chem. 273, 7478-7487] for the interaction of heparin-derived oligosaccharides with antithrombin, but with a minor extension: in the first step a low-affinity recognition complex between ligand and receptor is formed, accompanied by a conformational change in the tetrasaccharide, possibly creating a complementary three-dimensional structure to fit the protein-binding site. During the second step, as observed in a structurally similar pentasaccharide [Skinner, R., Abrahams, J.-P., Whisstock, J.C., Lesk, A.M., Carrell, R.W. & Wardell, M.R. (1997) J. Mol. Biol. 266, 601-609; Jin, L., Abrahams, J.-P., Skinner, R., Petitou, M., Pike, R. N. & Carrell, R.W. (1997) Proc. Natl Acad. Sci. USA 94, 14683-14688], conformational changes in the binding site of the protein result in a latent conformation.  (+info)

Two hour ambulation after coronary angioplasty and stenting with 6 F guiding catheters and low dose heparin. (54/6896)

OBJECTIVE: To evaluate the feasibility and safety of ambulation of patients two hours after elective coronary angioplasty or stenting, or both. METHODS: Coronary angioplasty and stenting were performed using 6 F guiding catheters by the femoral approach and a standard dose of heparin 5000 IU. There were no angiographic exclusion criteria except for planned atherectomy. Patients given oral anticoagulants or heparin were not eligible. All patients were given aspirin. Patients who underwent stent implantation also received ticlopidine 250 mg daily. The arterial sheath was removed immediately after the procedure. Haemostasis was achieved by manual compression and maintained with an inguinal compression bandage. Early ambulation was attempted after two hours of supine bed rest following removal of the bandage. MAIN OUTCOME MEASURES: The incidence of bleeding at or during ambulation requiring compression and additional bed rest, and puncture site complications documented 48 hours after the procedure. RESULTS: 300 of 359 consecutive eligible patients were included for two hour ambulation. Stent implantation was performed in 32% of the procedures. The mean (SD) time to haemostasis was 9.6 (3.2) minutes. Bleeding at ambulation occurred in five patients (1.7%), and nine patients (3.0%) reached the secondary end point of haematoma > 5 x 5 cm at 48 hour follow up. All were treated conservatively without further sequelae. There was no late bleeding or vascular complications. CONCLUSION: Ambulation two hours after elective balloon angioplasty or stent implantation with 6 F guiding catheters by the femoral route and low dose heparin is feasible and safe, with a low incidence of puncture site complications. This early ambulation protocol facilitates a short hospital stay.  (+info)

Effects of a phosphate buffered extracellular (Ep4) solution in preservation and reperfusion injury in the canine liver. (55/6896)

The Ep4 solution, a phosphate buffered extracellular-type solution, is effective in canine lung transplantation following a 96-hour hypothermic (4 degrees C) preservation. In this experiment, we used this solution for liver preservation followed by transplantation. We compared the Ep4 solution with the lactated Ringer's (LR) and the Collins' M (CM) solution (a phosphate buffered intracellular-type solution) in two studies, 1) 48-hour liver preservation, and 2) orthotopic liver transplantation after 5-hour preservation. In the preservation study, purine nucleoside phosphorylase (PNP) levels as a marker of endothelial damage, and alanine aminotransferase (ALT) levels were significantly lower in the livers immersed into the Ep4 solution than in those immersed into other solutions at 36 and 48 hours after preservation. Microscopically, the endothelial injury occurred 24 hours after preservation in the CM solution, and 36 hours after preservation in the LR and Ep4 solutions. In the transplantation study, serum PNP and ALT levels in the livers immersed in Ep4 solution showed a lower tendency compared with those in other solutions at the time of reperfusion, but the histological differences among three groups were not apparent. The present study suggests that the liver can be stored better for a longer time using Ep4 solution than using LR and CM solutions.  (+info)

Microheterogeneity of beta-2 glycoprotein I: implications for binding to anionic phospholipids. (56/6896)

Considerable interest is currently focused on the interactions of beta-2 glycoprotein I (beta2GPI) and anti-phospholipid antibodies with anionic phospholipids in an attempt to understand the association between these antibodies and clinical diseases such as thrombosis. The interactions of beta2GPI and anionic phospholipids have only been characterized partially, and the physiological role of this glycoprotein remains uncertain. In this study we have explored in detail the physical and phospholipid-binding characteristics of a number of beta2GPI preparations. We have found (i) that perchloric acid-purification methods are damaging to beta2GPI during purification, (ii) that the dissociation constants of the various preparations for phosphatidylserine vary between 0. 1-2 microM and are considerably weaker than previously reported, (iii) that considerable differences in affinity of the various beta2GPI preparations for anionic phospholipids are obtained when comparing anionic phospholipids immobilized to a solid-phase versus phospholipid assembled in unilamellar vesicles, (iv) that the integrity of the fifth domain of beta2GPI is important for binding immobilized anionic phospholipid but not especially important in binding vesicular anionic phospholipid, and (v) that beta2GPI preparations with differing isoelectric species content bind anionic phospholipids differently, suggesting that varying glycosylation and/or protein polymorphisms impact upon phospholipid binding. These results highlight the importance of assessing the determinants of the interaction of beta2GPI with anionic phospholipids assembled in unilamellar vesicles.  (+info)