Overexpression of murine Pax3 increases NCAM polysialylation in a human medulloblastoma cell line. (65/1266)

Polysialic acid (PSA) is a developmentally regulated carbohydrate found primarily on neural cell adhesion molecules (NCAM) in embryonic tissues. The majority of NCAM in adult tissues lacks this unique carbohydrate, but polysialylated NCAM (PSA-NCAM) is present in adult brain regions where neural regeneration persists and in some pediatric brain tumors such as medulloblastoma, which show greater propensity for leptomeningeal spread. Pax3, a developmentally regulated paired homeodomain transcription factor, is thought to be involved in the regulation of neural cell adhesion molecules. Overexpression of murine Pax3 into a human medulloblastoma cell line (DAOY) resulted in an increase in NCAM polysialylation and a 2-4-fold increase in alpha2, 8-polysialyltransferase type II mRNA levels. No difference was observed in alpha2,8-polysialyltransferase type IV message. The addition of PSA to NCAM changed the adhesive behavior of these Pax3 transfectants. Transfectants expressing high PSA-NCAM show much less NCAM-dependent aggregation than those with less PSA-NCAM. In addition, Pax3 transfectants having high PSA-NCAM show heterophilic adhesion involving polysialic acid to heparan sulfate proteoglycan and agrin. These observations suggest that a developmentally regulated transcription factor, Pax3, could affect NCAM polysialylation and subsequently cell-cell and cell-substratum interaction.  (+info)

Anti-angiogenic cues from vascular basement membrane collagen. (66/1266)

Vascular basement membrane is an important structural component of blood vessels and has been shown to interact with and modulate vascular endothelial behavior during angiogenesis. During the inductive phase of tumor angiogenesis, this membrane undergoes many degradative and structural changes and reorganizes to a native state around newly formed capillaries in the resolution phase. Such matrix changes are potentially associated with molecular modifications that include expression of matrix gene products coupled with conformational changes, which expose cryptic protein modules for interaction with the vascular endothelium. We speculate that these interactions provide important endogenous angiogenic and anti-angiogenic cues. In this report, we identify an important antiangiogenic vascular basement membrane-associated protein, the 26-kDa NC1 domain of the alpha1 chain of type IV collagen, termed arresten. Arresten was isolated from human placenta and produced as a recombinant molecule in Escherichia coli and 293 embryonic kidney cells. We demonstrate that arresten functions as an anti-angiogenic molecule by inhibiting endothelial cell proliferation, migration, tube formation, and Matrigel neovascularization. Arresten inhibits the growth of two human xenograft tumors in nude mice and the development of tumor metastases. Additionally, we show that the anti-angiogenic activity of arresten is potentially mediated via mechanisms involving cell surface proteoglycans and the alpha1beta1 integrin on endothelial cells. Collectively, our results suggest that arresten is a potent inhibitor of angiogenesis with a potential for therapeutic use.  (+info)

A novel role for nitric oxide in the endogenous degradation of heparan sulfate during recycling of glypican-1 in vascular endothelial cells. (67/1266)

We show here that the endothelial cell-line ECV 304 expresses the heparan sulfate proteoglycan glypican-1. The predominant cellular glycoform carries truncated side-chains and is accompanied by heparan sulfate oligosaccharides. Treatment with brefeldin A results in accumulation of a glypican proteoglycan with full-size side-chains while the oligosaccharides disappear. During chase the glypican proteoglycan is converted to partially degraded heparan sulfate chains and chain-truncated proteoglycan, both of which can be captured by treatment with suramin. The heparan sulfate chains in the intact proteoglycan can be depolymerized by nitrite-dependent cleavage at internally located N-unsubstituted glucosamine moieties. Inhibition of NO-synthase or nitrite-deprivation prevents regeneration of intact proteoglycan from truncated precursors as well as formation of oligosaccharides. In nitrite-deprived cells, formation of glypican proteoglycan is restored when NO-donor is supplied. We propose that, in recycling glypican-1, heparan sulfate chains are cleaved at or near glucosamines with unsubstituted amino groups. NO-derived nitrite is then required for the removal of short, nonreducing terminal saccharides containing these N-unsubstituted glucosamine residues from the core protein stubs, facilitating re-synthesis of heparan sulfate chains.  (+info)

Mutational analysis of the GPC3/GPC4 glypican gene cluster on Xq26 in patients with Simpson-Golabi-Behmel syndrome: identification of loss-of-function mutations in the GPC3 gene. (68/1266)

Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked syndrome characterized by pre- and postnatal overgrowth (gigantism), which clinically resembles the autosomal Beckwith-Wiedemann syndrome (BWS). Deletions and translocations involving the glypican-3 gene ( GPC3 ) have been shown to be associated with SGBS. Occasionally, these deletions also include the glypican-4 gene ( GPC4 ). Glypicans are heparan sulfate proteoglycans which have a role in the control of cell growth and cell division. We have examined the mutational status of the GPC3 and GPC4 genes in one patient with Perlman syndrome, three patients with overgrowth without syndrome diagnosis, ten unrelated SGBS-patients and 11 BWS patients. We identified one SGBS patient with a deletion of a GPC3 exon. Six SGBS patients showed point mutations in GPC3. One frameshift, three nonsense, and one splice mutation predict a loss-of-function of the glypican-3 protein. One missense mutation, W296R, changes an amino acid that is conserved in all glypicans identified so far. A GPC3 protein that reproduces this mutation is poorly processed and fails to increase the cell surface expression of heparan sulfate, suggesting that this missense mutation is also a loss-of-function mutation. In three SGBS patients and in all non-SGBS patients, no mutations could be identified. We found three single nucleotide polymorphisms in the GPC4 gene but no evidence for loss-of-function mutations in GPC4 associated with SGBS.  (+info)

Perlecan heparan sulfate proteoglycan: a novel receptor that mediates a distinct pathway for ligand catabolism. (69/1266)

Cell surface heparan sulfate proteoglycans (HSPGs) participate in the catabolism of many physiologically important ligands. We previously reported that syndecan HSPGs directly mediate endocytosis, independent of coated pits. We now studied perlecan, a major cell surface HSPG genetically distinct from syndecans. Cells expressing perlecan but no other proteoglycans bound, internalized, and degraded atherogenic lipoproteins enriched in lipoprotein lipase. Binding was blocked by heparitinase, and degradation by chloroquine. Antibodies against beta(1) integrins reduced initial ligand binding, consistent with their roles as cell surface attachment sites for perlecan. By several criteria, catabolism via perlecan was distinct from either coated pits or the syndecan pathway. The kinetics of internalization (t(12) = 6 h) and degradation (t(12) approximately 18 h) were remarkably slow, unlike the other pathways. Blockade of the low density lipoprotein receptor-related protein did not slow perlecan-dependent internalization. Internalization via perlecan was inhibited by genistein but unaffected by cytochalasin D, a pattern distinct from coated pits or syndecan-mediated endocytosis. Finally, we examined cooperation between perlecan and low density lipoprotein receptors and found limited synergy. Our results demonstrate that perlecan mediates internalization and lysosomal delivery that is kinetically and biochemically distinct from other known uptake pathways and is consistent with a very slow component of HSPG-dependent ligand processing found in vitro and in vivo.  (+info)

Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. (70/1266)

The angiogenic inducer Cyr61 is an extracellular matrix-associated heparin-binding protein that can mediate cell adhesion, stimulate cell migration, and enhance growth factor-stimulated DNA synthesis in both fibroblasts and endothelial cells in culture. In vivo, Cyr61 induces neovascularization and promotes tumor growth. Cyr61 is a prototypic member of a highly conserved family of secreted proteins that includes connective tissue growth factor, nephroblastoma overexpressed, Elm-1/WISP-1, Cop-1/WISP-2, and WISP-3. Encoded by an immediate early gene, Cyr61 synthesis is induced by serum growth factors in cultured fibroblasts and in dermal fibroblasts during cutaneous wound healing. We previously demonstrated that Cyr61 mediates adhesion of vascular endothelial cells and activation-dependent adhesion of blood platelets through direct interaction with integrins alpha(V)beta(3) and alpha(IIb)beta(3), respectively. In this study, we show that the adhesion of primary human skin fibroblasts to Cyr61 is mediated through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans (HSPGs), which most likely serve as co-receptors. Either destruction of cell surface HSPGs or prior occupancy of the Cyr61 heparin-binding site completely blocked cell adhesion to Cyr61. A heparin-binding defective mutant of Cyr61 was unable to mediate fibroblast adhesion through integrin alpha(6)beta(1) but still mediated endothelial cell adhesion through integrin alpha(V)beta(3), indicating that endothelial cell adhesion through integrin alpha(V)beta(3) is independent of the heparin-binding activity of Cyr61. These results identify Cyr61 as a novel adhesive substrate for integrin alpha(6)beta(1) and provide the first demonstration of the requirement for HSPGs in integrin-mediated cell attachment. In addition, these findings suggest that Cyr61 might elicit disparate biological effects in different cell types through interaction with distinct integrin receptors.  (+info)

Perlecan domain V of Drosophila melanogaster. Sequence, recombinant analysis and tissue expression. (71/1266)

The C-terminal domain V of the basement membrane proteoglycan perlecan was previously shown to play a major role in extracellular matrix and cell interactions. A homologous sequence of 708 amino-acid residues from Drosophila has now been shown to be 33% identical to mouse perlecan domain V. It consists of three laminin G-type (LG) and epidermal growth factor-like (EG) modules but lacks the EG3 module and a link region found in mammalian perlecans. Recombinant production of Drosophila perlecan domain V in mammalian cells yielded a 100-kDa protein which was folded into a linear array of three globular LG domains. Unlike the mouse counterpart, domain V from Drosophila was not modified by glycosaminoglycans and endogenous proteolysis, due to the absence of the link region. It showed moderate affinities for heparin and sulfatides but did not bind to chick alpha-dystroglycan or to various mammalian basement membrane proteins. A single RGD sequence in LG3 of Drosophila domain V was also incapable of mediating cell adhesion. Production of a proteoglycan form of perlecan (approximately 450 kDa) in one Drosophila cell line could be demonstrated by immunoblotting with antibodies against Drosophila domain V. A strong expression was also found by in situ hybridization and immunohistology at various stages of embryonic development and expression was localized to several basement membrane zones. This indicates, as for mammalian species, a distinct role of perlecan during Drosophila development.  (+info)

Oversulfated fucoidan inhibits the basic fibroblast growth factor-induced tube formation by human umbilical vein endothelial cells: its possible mechanism of action. (72/1266)

We have previously demonstrated that chemically oversulfated fucoidan (OSF) but not native fucoidan (NF) effectively suppresses the tube structure formation by human umbilical vein endothelial cells (HUVEC) on the basement membrane preparation, Matrigel. In this study, using more defined systems where basic fibroblast growth factor (bFGF) induces the tube formation by HUVEC on collagen gel, we investigated the mechanism responsible for the inhibition of angiogenesis by OSF in vitro. Unlike NF and desulfated fucoidan (desF), OSF potently inhibited the bFGF-induced HUVEC migration and tube formation. ELISA for tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) in the culture media indicated that OSF increased the bFGF-induced release of PAI-1 antigen, but not of t-PA antigen. Analyses of the binding of bFGF to HUVEC surfaces and the following protein tyrosine phosphorylation revealed that OSF could promote the cell binding and autophosphorylation of 140 and 160 kDa receptors. In heparitinase-treated HUVEC, contrarily, the bFGF binding and PAI-1 release were decreased by OSF. These results suggest that OSF is a highly sulfated unique polysaccharide that can promote the binding of bFGF to the heparan sulfate molecules required for binding to the high affinity receptors with tyrosine kinase activity. The resultant increase in PAI-1 release may play a key role for the prevention of cell migration accompanied by matrix proteolysis.  (+info)