(1/621) Platelet aggregation and incident ischaemic heart disease in the Caerphilly cohort.

BACKGROUND: Platelets are involved in myocardial infarction but evidence of prediction of infarction by measures of platelet function are sparce. METHODS: Platelet aggregation to thrombin and to ADP in platelet rich plasma was recorded for 2176 men aged 49-65 years in the Caerphilly cohort study. RESULTS: Results from 364 men were excluded, 80 of whom had not fasted before venepuncture; most of the others were excluded because antiplatelet medication had been taken shortly before the platelet tests. During the five years following the platelet tests 113 ischaemic heart disease (IHD) events which fulfilled the World Health Organisation criteria were identified--42 fatal and 71 non-fatal. No measure of platelet aggregation was found to be significantly predictive of incident IHD. The possibility that platelet function is predictive for only a limited time after it is characterised, and that prediction falls off with time, was tested. When IHD events are grouped by their time of occurrence after aggregation had been measured, the test results show a gradient suggestive of prediction of early IHD events. Thus, 24% of the men who had an event within 500 days of the test had had a high secondary response to ADP while only 12% of those whose IHD event had been 1000 or more days after the test had shown a high platelet response at baseline. The trend in these proportions is not significant. CONCLUSIONS: Platelet aggregation to thrombin and ADP in platelet rich plasma was recorded in the Caerphilly cohort study. No measure of aggregation was found to be predictive of IHD.  (+info)

(2/621) Tightly regulated and inducible expression of rabbit CYP2E1 using a tetracycline-controlled expression system.

A tetracycline (Tc)-controlled gene expression system that quantitatively controls gene expression in eukaryotic cells () was used to express cytochrome P-450 2E1 (CYP2E1) in HeLa cells in culture. The rabbit CYP2E1 cDNA was subcloned into the Tc-controlled expression vector (pUHD10-3) and transfected into a HeLa cell line constitutively expressing the Tc-controlled transactivator, a positive regulator of expression in the absence of Tc. The expression of CYP2E1 was tightly regulated. There was a time-dependent induction of CYP2E1 after removal of Tc. In the absence of Tc, the enzyme was induced more than 100-fold and expressed about 18 pmol of CYP2E1/mg microsomal protein. At maximal levels of expression the enzyme catalyzed the formation of 158 pmol 6-hydroxychlorzoxazone/min/mg total cellular protein. In addition, the level of the enzyme could be modulated by the concentration of Tc in the media. In the absence of Tc, exposure of cells to N-nitrosodimethylamine caused a significant dose-dependent decrease in cell viability. In contrast, menadione, a redox cycling toxicant, was less toxic to the cells after induction of CYP2E1 when compared with noninduced cells. Pulse-chase studies conducted 72 h after removal of Tc indicated a rapid turnover of CYP2E1 with a half-life of 3.9 h. Addition of the ligand, 4-methylpyrazole, and the suicide substrate, 1-aminobenzotrizole, decreased the degradation of CYP2E1. This cell line offers a useful system to examine the role of CYP2E1 in the cytotoxicity of xenobiotics and to investigate post-translational regulation of the enzyme.  (+info)

(3/621) An acutely painful elbow as a first presentation of von Willebrand's disease.

A 26 year old woman presented to the accident and emergency department with a painful right elbow. There had been no history of trauma. Clinical examination suggested an effusion, which was confirmed on radiological examination. Her elbow was aspirated and revealed a haemarthrosis. Subsequent investigations revealed a diagnosis of von Willebrand's disease (vWD). A spontaneously occurring effusion of the elbow may be due to a haemarthrosis. Aspiration of blood in the absence of trauma may lead to a diagnosis of an occult coagulopathy in addition to relieving pain. The diagnosis and treatment of vWD is discussed.  (+info)

(4/621) Inhibitory effect of sulfur-containing compounds in Scorodocarpus borneensis Becc. on the aggregation of rabbit platelets.

The inhibitory effects of three pure compounds isolated from wood garlic, 2,4,5-trithiahexane (I), 2,4,5,7-tetrathiaoctane (II), and 2,4,5,7-tetrathiaoctane 2,2-dioxide (III), on rabbit platelet aggregation induced by collagen, arachidonic acid, U46619, ADP (adenosine 5'-diphosphate), PAF (platelet aggregating factor), and thrombin were studied in vitro. The anti-aggregating activity of 2,4,5,7-tetrathiaoctane 4,4-dioxide (IV) was also measured with collagen and arachidonic acid. I, II, III, and IV inhibited the platelet aggregation induced by all tested agonists. I, II, and III exhibited a stronger inhibitory effect against the thrombin-induced aggregation of GFP (gel-filtered platelets) than against the aggregation induced by the other agonists. Notably, the IC50 value for III was 4 microM, which is approximately 2.5 times stronger than MATS (methyl allyl trisulfide), a major anti-platelet compound isolated from garlic. In inhibiting collagen-induced aggregation, II was as potent as MATS and aspirin, with a marked disaggregation effect on the secondary aggregation by arachidonic acid, at the rate of 47.05%/min at a concentration of 10(-4) M. I, II, and III also suppressed U46619-induced aggregation. These results suggest that sulfur-containing compounds in wood garlic not only inhibit arachidonic acid metabolism but also suppress aggregation in association with the function of the platelet plasma membrane.  (+info)

(5/621) Histological changes in the rat common carotid artery induced by aneurysmal wrapping and coating materials.

Histological changes in and around the arterial walls of rats were investigated following topical application of aneurysmal wrapping and coating materials, including a fibrin glue, a cyanoacrylate glue (Biobond), and cotton fibers (Bemsheet). Bilateral common carotid arteries were exposed using sterile techniques, and one of the test materials was applied to the right artery. The left artery was used as the control. Changes in arterial histology were evaluated at 2 weeks, 1 month, 2 months, and 3 months after surgery. The fibrin glue was surrounded by intense inflammation at 2 weeks after surgery. Both the fibrin glue and inflammation had disappeared at 2 months, but the glue had induced mild inflammation in the adventitia. Biobond caused chronic inflammation, necrosis of the media, and thickening of the arterial wall due to fibrosis in both the media and adventitia. Bemsheet produced chronic inflammation, progressive fibrosis, and granuloma. Connective tissue increased in the adventitia, but no major changes were observed in the media. The Bemsheet fibers remained unchanged, and adhered to the arterial wall. Although arterial stenoses were not observed in the present study, the results suggest that cyanoacrylate glue can cause the arterial occlusive lesions observed following aneurysm surgery.  (+info)

(6/621) Strategy for balancing anticoagulation and hemostasis in aortocoronary bypass surgery: blood conservation and graft patency.

The minimal effective dose of aprotinin on hemostasis under normothermic perfusion, the influence of anticoagulant therapy on graft patency, and the thromboembolic and hemorrhagic events were investigated after aortocoronary bypass graft operation (CABG). One hundred CABG patients under normothermic perfusion were randomly divided into the following groups: (1) coumadin plus acetylsalicylic acid (ASA) (n=32); no aprotinin used during cardiopulmonary bypass (CPB); (2) minimal-dose, 10(6) KIU during CPB, aprotinin used, followed by ASA and coumadin (n=36); and (3) very low-dose, total of 2x10(6) KIU before CPB and during CPB; aprotinin used; anticoagulation therapy with heparin early after surgery and followed by replacement with ASA and coumadin (n=32). The patency of arterial grafts was 100% in all groups. The patency of vein grafts was 95-98% and there was no difference among the groups. The blood loss was significantly reduced in both aprotinin groups (groups 2 and 3) compared to the coumadin plus ASA group, although no difference existed between the 2 aprotinin groups. Postoperative thrombotic and hemorrhagic events were not observed in any group. From this study, it was concluded that 10(6) KIU aprotinin in pump-prime-only followed by oral ASA and coumadin was the recommendation from the benefit/cost consideration.  (+info)

(7/621) Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration.

Aberrant regulation of smooth muscle cell proliferation and migration is associated with the pathophysiology of vascular disorders such as hypertension, atherosclerosis, restenosis, and graft rejection. To elucidate molecular mechanisms that regulate proliferation and migration of vascular smooth muscle cells, we determined whether signaling through the small G protein Rho is involved in thrombin- and phenylephrine-stimulated proliferation and migration of rat aortic smooth muscle cells (RASMCs). Thrombin and the thrombin peptide SFLLRNP stimulated DNA synthesis of RASMCs as measured by [3H]thymidine incorporation. Both ligands also increased cell migration as measured by the Boyden chamber method. L-Phenylephrine failed to induce either of these responses but increased inositol phosphate accumulation and mitogen-activated protein kinase activation in these cells, which indicated that the cells were responsive to alpha1-adrenergic stimulation. The C3 exoenzyme, which ADP-ribosylates and inactivates Rho, fully inhibited both thrombin-stimulated proliferation and migration but had no effect on inositol phosphate accumulation. In addition, Y-27632, an inhibitor of the Rho effector p160ROCK/Rho kinase, decreased thrombin-stimulated DNA synthesis and migration. To directly examine Rho activation, Rho-[35S]GTPgammaS binding was measured. The addition of the thrombin peptide SFLLRNP, but not phenylephrine, to RASMC lysates resulted in a significant increase in Rho-[35S]GTPgammaS binding. Thrombin and SFLLRNP, but not phenylephrine, also increased membrane-associated Rho in intact RASMCs, consistent with selective activation of Rho by thrombin. These results indicate that thrombin activates Rho in RASMCs and establish Rho as a critical mediator of thrombin receptor effects on DNA synthesis and cell migration in these cells.  (+info)

(8/621) Erythropoietin- and stem cell factor-induced DNA synthesis in normal human erythroid progenitor cells requires activation of protein kinase Calpha and is strongly inhibited by thrombin.

Proliferation, differentiation, and survival of erythroid progenitor cells are mainly regulated by stem cell factor (SCF) and erythropoietin (Epo). Using normal human progenitors, we analyzed the role of Ca2+-sensitive protein kinase C (PKC) subtypes and of G-protein-coupled receptor ligands on growth factor-dependent DNA synthesis. We show that stimulation of DNA synthesis by the two growth factors requires activation of PKCalpha. Inhibitors of Ca2+-activated PKC subtypes blocked the growth factor-induced 3H-thymidine incorporation. SCF and Epo caused no significant translocation of PKCalpha into the membrane, but treatment of intact cells with either of the two cytokines resulted in enhanced activity of immunoprecipitated cytosolic PKCalpha. Stimulation of PKC with the phorbol ester PMA mimicked the cytokine effect on DNA synthesis. Epo-, SCF-, and PMA-induced thymidine incorporation was potently inhibited by thrombin (half-maximal inhibition with 0.1 U/mL). This effect was mediated via the G-protein-coupled thrombin receptor and the Rho guanosine triphosphatase. Adenosine diphosphate caused a modest Ca2+-dependent stimulation of DNA synthesis in the absence of cytokines and specifically enhanced the effect of SCF. Cyclic 3', 5'-adenosine monophosphate exerted a selective inhibitory effect on Epo-stimulated thymidine incorporation. Our results define PKCalpha as major intermediate effector of cytokine signaling and suggest a role for thrombin in controlling erythroid progenitor proliferation.  (+info)