Serpent regulates Drosophila immunity genes in the larval fat body through an essential GATA motif. (9/614)

Insects possess a powerful immune system, which in response to infection leads to a vast production of different antimicrobial peptides. The regulatory regions of many immunity genes contain a GATA motif in proximity to a kappaB motif. Upon infection, Rel proteins enter the nucleus and activate transcription of the immunity genes. High levels of Rel protein-mediated Cecropin A1 expression previously have been shown to require the GATA site along with the kappaB site. We provide evidence demonstrating that the GATA motif is needed for expression of the Cecropin A1 gene in larval fat body, but is dispensable in adult fat body. A nuclear DNA-binding activity interacts with the Cecropin A1 GATA motif with the same properties as the Drosophila GATA factor Serpent. The GATA-binding activity is recognized by Serpent-specific antibodies, demonstrating their identity. We show that Serpent is nuclear in larval fat body cells and haemocytes both before and after infection. After overexpression, Serpent increases Cecropin A1 transcription in a GATA-dependent manner. We propose that Serpent plays a key role in tissue-specific expression of immunity genes, by priming them for inducible activation by Rel proteins in response to infection.  (+info)

Molecular cloning and functional properties of two early-stage encapsulation-relating proteins from the coleopteran insect, Tenebrio molitor larvae. (10/614)

Encapsulation is a major defensive reaction against foreign materials that are too large to be phagocytosed by individual hemocytes; however, the biochemical process of encapsulation is still obscure. To isolate and characterize the early-stage encapsulation-relating protein (ERP), we used the coleopteran insect, Tenebrio molitor larvae, injecting three differing kinds of bead or inserting pieces of surgical suture into the abdomen of T. molitor larvae. The resulting proteins from the injected beads or the inserted pieces of surgical suture were recovered 10 min after injection or insertion, and were analyzed on SDS/PAGE under reducing conditions. Four different proteins (86, 78, 56 and 48 kDa) were enriched compared with the crude hemolymph. Among them, we purified 56-kDa and 48-kDa ERPs to homogeneity and raised polyclonal antibodies against each protein. Immunoblotting analysis showed that the affinity-purified antibodies of the 56-kDa and 48-kDa ERPs cross-reacted with the 48-kDa and 56-kDa ERPs, respectively. Analysis of the cDNA of 56-kDa ERP consisted of 579 amino acid residues and showed a novel glutamine-rich protein. Positive clones of the 48-kDa ERP showed the same DNA sequence as 56-kDa ERP. Interestingly, the chemically determined N-terminal amino acid sequence and the three partial amino acid sequences of the 48-kDa protein were found in the 56-kDa ERP, suggesting that the 48 kDa ERP was produced by the cleavage of Arg101-Gly102 of the 56-kDa ERP by a limited proteolysis. Western blotting analysis showed that these ERPs were detected exclusively on membrane fractions of hemocytes. Also, when the early-stage encapsulated beads were coated with both the 56-kDa and 48-kDa ERP antibodies and re-injected into larvae, no further encapsulation reaction was observed. However, when the early-stage encapsulated beads were incubated with 56-kDa ERP antibody, 48-kDa ERP antibody or nonimmunized rabbit IgG and re-injected into larvae, further encapsulation did occur.  (+info)

Perkinsus marinus extracellular protease modulates survival of Vibrio vulnificus in Eastern oyster (Crassostrea virginica) hemocytes. (11/614)

The in vitro effects of the Perkinsus marinus serine protease on the intracellular survival of Vibrio vulnificus in oyster hemocytes were examined by using a time-course gentamicin internalization assay. Results showed that protease-treated hemocytes were initially slower to internalize V. vulnificus than untreated hemocytes. After 1 h, the elimination of V. vulnificus by treated hemocytes was significantly suppressed compared with hemocytes infected with invasive and noninvasive controls. Our data suggest that the serine protease produced by P. marinus suppresses the vibriocidal activity of oyster hemocytes to effectively eliminate V. vulnificus, potentially leading to conditions favoring higher numbers of vibrios in oyster tissues.  (+info)

Horseshoe crab hemocyte-derived antimicrobial polypeptides, tachystatins, with sequence similarity to spider neurotoxins. (12/614)

Antimicrobial peptides, named tachystatins A, B, and C, were identified from hemocytes of the horseshoe crab Tachypleus tridentatus. Tachystatins exhibited a broad spectrum of antimicrobial activity against Gram-negative and Gram-positive bacteria and fungi. Of these tachystatins, tachystatin C was most effective. Tachystatin A is homologous to tachystatin B, but tachystatin C has no significant sequence similarity to tachystatins A and B. Tachystatins A and B showed sequence similarity to omega-agatoxin-IVA of funnel web spider venom, a potent blocker of voltage-dependent calcium channels. However, they exhibited no blocking activity of the P-type calcium channel in rat Purkinje cells. Tachystatin C also showed sequence similarity to several insecticidal neurotoxins of spider venoms. Tachystatins A, B, and C bound significantly to chitin. A causal relationship was observed between chitin binding activity and antifungal activity. Tachystatins caused morphological changes against a budding yeast, and tachystatin C had a strong cell lysis activity. The septum between mother cell and bud, a chitin-rich region, was stained by fluorescence-labeled tachystatin C, suggesting that the primary recognizing substance on the cell wall is chitin. As horseshoe crab is a close relative of the spider, tachystatins and spider neurotoxins may have evolved from a common ancestral peptide, with adaptive functions.  (+info)

Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. (13/614)

Extracts of the granular haemocytes of Carcinus maenas were subjected to ion-exchange chromatography and reverse-phase (RP)-HPLC to investigate the presence of an antibacterial protein of approximately 11 kDa. This protein was isolated, characterized and subjected to partial amino acid sequence analysis. It was found by mass spectrometry to have a molecular mass of 11 534 Da, to be cationic and hydrophobic and active only against marine Gram-positive bacteria. In addition its activity is stable after heating to 100 degrees C and is retained at concentrations as low as 10 microgram.mL-1. It has an unusual amino acid sequence, unlike any known antibacterial peptide described in the literature but bears a consensus disulphide domain signature, indicating that it might be a member of the four-disulphide core proteins. Partial cDNA sequence data has been obtained.  (+info)

Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis. (14/614)

We report here the isolation of two isoforms of a novel cysteine-rich peptide from haemocytes (isoform A of 4.438 Da and B of 4.562 Da) and plasma (isoform A) of the mussel, Mytilus galloprovincialis. The two molecules display antibacterial activity against gram-positive bacteria, whereas only isoform B is active against the fungus Fusarium oxysporum and a gram-negative bacteria Escherichia coli D31. Complete peptide sequences were determined by a combination of Edman degradation, mass spectrometry and cDNA cloning using a haemocyte cDNA library. The mature molecules, named myticins, comprise 40 residues with four intramolecular disulfide bridges and a cysteine array in the primary structure different to that of the previously characterized cysteine-rich antimicrobial peptides. Sequence analysis of the cloned cDNAs revealed that myticin precursors consist of 96 amino acids with a putative signal peptide of 20 amino acids, the antimicrobial peptide sequence and a 36-residue C-terminal extension. This structure suggests that myticins are synthesized as preproproteins and then processed by various proteolytic events before storage of the active peptide in the haemocytes. Myticin precursors are expressed mainly in the haemocytes as revealed by Northern blot analysis.  (+info)

Inflammation causes a long-term hyperexcitability in the nociceptive sensory neurons of Aplysia. (15/614)

Nerve injury, tissue damage, and inflammation all cause hyperalgesia. A factor contributing to this increased sensitivity is a long-term (>24 hr) hyperexcitability (LTH) in the sensory neurons that mediate the responses. Using the cluster of nociceptive sensory neurons in Aplysia californica as a model, we are examining how inflammation induces LTH. A general inflammatory response was induced by inserting a gauze pad into the animal Within 4 days, the gauze is enmeshed in an amorphous material that contains hemocytes, which comprise a cellular immune system. Concurrently, LTH appears in both ipsilateral and contralateral sensory neurons. The LTH is manifest as increased action potential discharge to a normalized stimulus. Immunocytochemistry revealed that hemocytes have antigens recognized by antibodies to TGFbeta1, IL-6, and 5HT. When a localized inflammation was elicited on a nerve, hemocytes containing the TGFbeta1 antigen were present near axons within the nerve and those containing the IL-6 were on the surface. Western blots of hemocytes, or of gauze that had induced a foreign body response, contained a 28-kD polypeptide recognized by the anti-TGFbeta1 antibody. Exposure of the nervous system to recombinant human TGFbeta1 elicited increased firing of the nociceptive neurons and a decrease in threshold. The TGFbeta1 also caused an activation of protein kinase C (PKC) in axons but did not affect a kinase that is activated in axons after injury. Our findings, in conjunction with previous results, indicate that a TGFbeta1-homolog can modulate the activity of neurons that respond to noxious stimuli. This system could also contribute to interactions between the immune and nervous systems via regulation of PKC.  (+info)

Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge. (16/614)

MGD1 (Mytilus galloprovincialis defensin 1), a new member of the arthropod defensin family, is a 4 kDa antibacterial peptide previously isolated from the plasma of Mediterranean mussels. We report here the presence of MGD1 in the organelle-rich fraction of hemocytes and the cDNA sequence corresponding to MGD1 and one new isoform mRNA: MGD2. Sequence analysis indicated that MGDs are synthesised as precursors consisting of a putative signal peptide of 21 residues, the active peptide of 39 amino acids and a 21 residue carboxyl-terminal extension, rich in acidic amino acids. Localisation of the transcripts by northern blot revealed that the precursors are abundantly expressed in hemocytes. Immunocytochemistry at both the optical and ultrastructural levels showed that defensins (i) are predominantly located in vesicles of a granulocyte subclass of hemocytes containing small granules, (ii) are also found in large clear granules of another granulocyte subclass, and (iii) that MGD immune reactivity existed in granular structures of enterocytes. Finally, we revealed that bacterial challenge triggered a plasmatic increase of MGD1 concentration and gave evidence of the simultaneous release of the peptides from the hemocytes.  (+info)