(1/988) Hemocyanin of the horseshoe crab, Limulus polyphemus. Structural differentiation of the isolated components.

The high molecular weight hemocyanin found in the hemolymph of the horseshoe crab, Limulus polyphemus, is composed of at least eight different kinds of subunits. Ion exchange chromatography at high pH in the presence of EDTA yields five major zones, hemocyanins I to V, three of which are electrophoretically heterogeneous. The subunits have similar molecular weights, 65,000 to 70,000, and their amino acid compositions are remarkably similar to each other and to other arthropod and molluscan hemocyanins. Digestion of the native subunits of Limulus hemocyanin by formic acid or trypsin shows considerable structural diversity which is supported by cyanogen bromide cleavage patterns and by peptide mapping of the tryptic peptides prepared from denatured hemocyanin subunits. The structural differentiation of the subunits is accompanied by functional differentiation, as shown in previous investigations of their O2 and CO affinities (Sullivan, B., Bonaventura, J., and Bonaventura, C. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 2558-2562; Bonaventura, C., Bonaventura, J., Sullivan, B., and Bourne, S. (1975) Biochemistry 13, 4784-4789). The subunit diversity of Limulus hemocyanin suggests that other electrophoretically heterogeneous hemocyanins may be composed of structurally distinct subunits.  (+info)

(2/988) Cryptocyanin, a crustacean molting protein: evolutionary link with arthropod hemocyanins and insect hexamerins.

Cryptocyanin, a copper-free hexameric protein in crab (Cancer magister) hemolymph, has been characterized and the amino acid sequence has been deduced from its cDNA. It is markedly similar in sequence, size, and structure to hemocyanin, the copper-containing oxygen-transport protein found in many arthropods. Cryptocyanin does not bind oxygen, however, and lacks three of the six highly conserved copper-binding histidine residues of hemocyanin. Cryptocyanin has no phenoloxidase activity, although a phenoloxidase is present in the hemolymph. The concentration of cryptocyanin in the hemolymph is closely coordinated with the molt cycle and reaches levels higher than hemocyanin during premolt. Cryptocyanin resembles insect hexamerins in the lack of copper, molt cycle patterns of biosynthesis, and potential contributions to the new exoskeleton. Phylogenetic analysis of sequence similarities between cryptocyanin and other members of the hemocyanin gene family shows that cryptocyanin is closely associated with crustacean hemocyanins and suggests that cryptocyanin arose as a result of a hemocyanin gene duplication. The presence of both hemocyanin and cryptocyanin in one animal provides an example of how insect hexamerins might have evolved from hemocyanin. Our results suggest that multiple members of the hemocyanin gene family-hemocyanin, cryptocyanin, phenoloxidase, and hexamerins-may participate in two vital functions of molting animals, oxygen binding and molting. Cryptocyanin may provide important molecular data to further investigate evolutionary relationships among all molting animals.  (+info)

(3/988) Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma--a feasibility study.

The idiotype (Id) determinant on the multiple myeloma (MM) protein can be regarded as a tumor-specific marker. Immunotherapy directed at the MM Id may stem the progression of this disease. We report here on the first 12 MM patients treated at our institution with high-dose therapy and peripheral blood stem cell transplantation (PBSCT) followed by Id immunizations. MM patients received PBSCT to eradicate the majority of the disease. PBSCT produced a complete response in 2 patients, a partial response in 9 patients and stable disease in 1 patient. Three to 7 months after high-dose therapy, patients received a series of monthly immunizations that consisted of two intravenous infusions of Id-pulsed autologous dendritic cells (DC) followed by five subcutaneous boosts of Id/keyhole limpet hemocyanin (KLH) administered with adjuvant. Between 1 and 11 x 10(6) DC were obtained by leukapheresis in all patients even after PBSCT. The administration of Id-pulsed DC and Id/KLH vaccines were well tolerated with patients experiencing only minor and transient side effects. Two of 12 patients developed an Id-specific, cellular proliferative immune response and one of three patients studied developed a transient but Id-specific cytotoxic T-cell (CTL) response. Eleven of the 12 patients generated strong KLH-specific cellular proliferative immune responses showing the patients' immunocompetence at the time of vaccination. The two patients who developed a cellular Id-specific immune response remain in complete remission. Of the 12 treated patients, 9 are currently alive after autologous transplantation with a minimum follow-up of 16 months, 2 patients died because of recurrent MM and 1 patient succumbed to acute leukemia. These studies show that patients make strong anti-KLH responses despite recent high-dose therapy and that DC-based Id vaccination is feasible after PBSCT and can induce Id-specific T-cell responses. Further vaccine development is necessary to increase the proportion of patients that make Id-specific immune responses. The clinical benefits of Id vaccination in MM remain to be determined.  (+info)

(4/988) Physiological effects and adjuvanticity of recombinant brushtail possum TNF-alpha.

The present paper describes the physiological properties of recombinant possum TNF-alpha and an adjuvant effect on antibody responses to the model protein antigen, keyhole limpet haemocyanin (KLH). For these studies recombinant possum TNF-alpha was produced in the yeast Pichia pastoris. The recombinant cytokine was secreted into the culture medium and purified by gel filtration. Possum TNF-alpha produced in this expression system was N-glycosylated and bioactive in two different assays. In a murine fibroblast L929 cytotoxicity assay, the possum TNF-alpha had lower specific activity compared to human TNF-alpha, while in a possum-specific assay, possum TNF-alpha enhanced the proliferation of PHA-stimulated possum thymocytes and was more active than human TNF-alpha. The physiological effect of the recombinant possum TNF-alpha was investigated in groups of possums administered doses of 6, 30 or 150 micrograms of cytokine. For each dose, TNF-alpha caused profound effects on the numbers of circulating leucocytes characterized by a three-to-four-fold increase in neutrophil numbers at 6-24 h after injection and an initial sharp decrease in lymphocyte numbers. The efficacy of TNF-alpha as an immunological adjuvant was determined in possums administered KLH (125 micrograms) in an aqueous or Al(OH)3-based formulation with or without added recombinant TNF-alpha (150 micrograms). Serum antibody responses to KLH were monitored by ELISA. The TNF-alpha stimulated two-fold and four-fold increases in antibody levels in aqueous and Al(OH)3-based vaccine formulations, respectively. The strongest antibody responses were observed in the group of possums that received KLH formulated in Al(OH)3 with addition of TNF-alpha.  (+info)

(5/988) Binding of carbon monoxide to alpha-hemocyanin and beta-hemocyanin from Helix pomatia.

The binding of carbon monoxide to alpha and beta-hemocyanin from the snail Helix pomatia was studied under equilibrium conditions. Homotropic interactions upon carbon monoxide binding were much weaker than upon the binding of oxygen. Heterotropic interactions (Bohr effect and calcium-ion effect), however, were just as strong as in the case of the binding of oxygen. For alpha-hemocyanin a linkage has been observed between the binding of carbon monoxide and a change in quaternary structure of the protein.  (+info)

(6/988) Absence of Peyer's patches and abnormal lymphoid architecture in chronic proliferative dermatitis (cpdm/cpdm) mice.

The chronic proliferative dermatitis (cpdm) mutation causes inflammation in multiple organs, most prominently in the skin. Examination of the immune system revealed severe abnormalities in the architecture of lymphoid tissues. Peyer's patches were absent. In contrast, the spleen, lymph nodes, and nasal-associated lymphoid tissues were present. The spleen had normal numbers of T and B cells, but the spleen, lymph nodes, and nasal-associated lymphoid tissues had poorly defined follicles and lacked germinal centers and follicular dendritic cells. The marginal zone in the spleen was absent. The total concentration of serum IgG, IgA, and IgE in cpdm/cpdm mice was significantly decreased, whereas serum IgM was normal. Fecal IgA was low to undetectable in mutant mice, and the concentration of fecal IgM was increased. The titer of DNP-specific Abs following immunization with DNP-keyhole limpet hemocyanin was significantly decreased for all IgG subclasses. In contrast, T cell function appeared normal as assessed by evaluation of the contact hypersensitivity response in cpdm/cpdm mice. The cpdm mutation causes a complex phenotype that is characterized by multiorgan inflammation and the defective development of lymphoid tissues. The cpdm/cpdm mouse may be a useful model to study the factors that control the development of lymphoid tissues, in particular the Peyer's patches, and the mechanisms that control the humoral immune response.  (+info)

(7/988) Specificity analysis of sera from breast cancer patients vaccinated with MUC1-KLH plus QS-21.

The mucin MUC1 is expressed on breast cancers in an underglycosylated form compared to normal tissues and is therefore a potential target for cancer immunotherapy. MUC1 contains multiple tandem repeats of the 20 amino acid (aa) peptide (VTSAPDTRPAPGSTAPPAHG). The APDTRPA epitope is particularly immunogenic since it is recognized by a variety of murine monoclonal antibodies and by some sera and cytotoxic T-cells from unimmunized patients with epithelial cancers. We have prepared a 30 aa peptide (C)VTSAPDTRPAPGSTAPPAHGVTSAPDTRPA with cysteine at the N-terminal end, and used the cysteine for chemical conjugation to keyhole limpet haemocyanin (KLH). Six breast cancer patients immunized with this conjugate plus the immunological adjuvant QS-21 have all produced high titre (by ELISA) IgG and IgM antibodies against the 30 aa MUC1 peptide, but these sera reacted moderately, or not at all, with MUC1-positive tumour cells. To understand this specificity better, we prepared a series of smaller peptides to determine the epitopes recognized by these immune sera in inhibition assays. Only peptides containing APDTRPA at the C-terminal end were able to completely inhibit ELISA reactivity for the full 30 aa peptide. No sera were completely inhibited by APDTR, APDTRP, PDTRPA or any other peptides that did not contain the full APDTRPA epitope. Remarkably, sera from all six patients recognized this same epitope and were completely inhibited by only this epitope. The specificity of these sera (1) primarily for C-terminal APDTRPA, and the absence of this epitope at the C-terminal end of any tumour mucins, and (2) the N-terminal APDTRPA alanine, which is normally buried in the beta turn MUC1 assumes in its secondary structure may explain the moderate to weak reactivity of these high titer sera against MUC1-positive tumour cells.  (+info)

(8/988) Identification, molecular cloning, and phylogenetic analysis of a non-respiratory pseudo-hemocyanin of Homarus americanus.

Copper-containing hemocyanins serve to transport oxygen in many arthropod species. Here I describe the identification and cDNA cloning of a structurally closely related non-respiratory pseudo-hemocyanin (PHc) of the American lobster, Homarus americanus. This protein has lost the ability to bind copper and, therefore, oxygen because a histidine residue in copper-binding site A is replaced by tyrosine. Like many arthropod hemocyanins, PHc forms a hexamer. It consists of two different subunit types of 660 and 661 amino acids, respectively, that share a 94.4% sequence identity. Whereas Homarus hemocyanin is produced in the hepatopancreas, PHc is synthesized by the ovaries and the heart tissue. Because different levels of PHc were observed in distinct individuals, I propose an association of the synthesis of this protein with the molting or reproduction cycle, similar to the hexamerins, insect storage proteins that are also related to the hemocyanins. However, phylogenetic analyses show that PHc derived independently from crustacean hemocyanins. Therefore, Homarus PHc is a member of a new class within the growing hemocyanin protein superfamily.  (+info)