A phase I single-dose trial of gadolinium texaphyrin (Gd-Tex), a tumor selective radiation sensitizer detectable by magnetic resonance imaging. (25/5038)

Gadolinium Texaphyrin (Gd-Tex) is a radiation sensitizer with a novel mechanism of action that sensitizes both oxic and hypoxic cells, localizes selectively in tumors, and is detectable by magnetic resonance imaging (MRI). This Phase I single-dose trial of Gd-Tex administered concurrently with radiation therapy was carried out to determine the maximally tolerated dose (MTD), dose-limiting toxicities, pharmacokinetics, and biolocalization of Gd-Tex as determined by MRI. Adults with incurable cancers of any histology requiring radiation therapy were eligible. A single i.v. dose of Gd-Tex was followed at least 2 h later by radiation therapy. The Gd-Tex dose was escalated in cohorts of 3 to 5 patients. Thirty-eight patients (median age, 58 years; range, 35-77 years) with incurable cancers of the lung (26), cervix (3), or other solid tumors (9) received a total of 41 single administrations of Gd-Tex. The Gd-Tex dose was escalated from 0.6 to 29.6 mg/kg. Irradiated sites included the thorax, brain, pelvis, bone, soft tissue, and sites of nodal metastases. The MTD was 22.3 mg/kg, determined by reversible acute tubular necrosis as the dose-limiting toxicities. Gd-Tex selectively accumulated in primary and metastatic tumors as demonstrated by MRI. No increase in radiation toxicity to normal tissues was seen. The median half-life of Gd-Tex after single-dose administration is 7.4 h. This study demonstrates that Gd-Tex is well tolerated in doses below the MTD, and that there is selective biolocalization in tumors. The maximum recommended dose for single administrations is 16.7 mg/kg.  (+info)

Early hematopoiesis and developing lymphoid organs in the zebrafish. (26/5038)

In zebrafish, the transparent and rapidly developing embryo and the potential for genetic screening offer a unique opportunity to investigate the early development of the vertebrate immune system. Here we describe the initial appearance of various blood lineages and the nature of accumulating hematopoietic tissue in the thymus and kidney, the main lymphoid organs of adult teleosts. The ultrastructure of the first site of hematopoiesis, the intermediate cell mass (ICM), is described from the 5-somite stage, about 11.5 hours post-fertilization (hpf) until 24 hpf. The ICM gives rise to the primitive erythroid lineage, which accounts for all circulating erythrocytes for the first 4 days pf. From 24 to 72 hpf, a few developing granulocytes are seen close to the yolk sac walls and in the caudal axial vein. The heart, previously proposed as an early blood-forming organ in zebrafish, did not contain hematopoietic cells. The thymic primordium, consisting of two layers of epithelial cells, appears at 60 hpf. By 65 hpf, it is colonized by immature lymphoblasts. The thymus gradually accumulates lymphocytes, and the lymphocytes and epithelial cells progressively differentiate for 3 weeks pf. At 96 hr, the pronephros contains hematopoietic cells, mainly developing erythrocytes and granulocytes. The amount of renal hematopoietic tissue increases rapidly; however, lymphocytes were not detected until 3 weeks pf.  (+info)

Relapse in chronic myeloid leukemia after bone marrow transplantation: biomathematical modeling as a new approach to understanding pathogenesis. (27/5038)

A biomathematical model was developed to simulate relapse development in patients with chronic myeloid leukemia (CML) following bone marrow transplantation (BMT). The purpose of this study was to better understand the pathophysiology of the time evolution of CML relapse and to provide means whereby the outcomes of patients with CML relapse can be projected and treatment modified accordingly. The model consists of three parallel series of catenated compartments representing granulopoiesis in normal (donor) cells from the marrow, in CML cells from the marrow, and in CML cells from extramedullary sites. It was assumed that CML stem cells were resistant to feedback control and that CML-derived neutrophils, as well as normal neutrophils, exercised feedback regulation of normal stem cells. The known longer generation times for CML neutrophil precursors compared with normal neutrophil precursors were used, and it was assumed that 10(7) pluripotential stem cells were infused with BMT. The model was evaluated for its ability to simulate the reappearance of CML (Philadelphia chromosome positive) metaphases in the marrow and the recovery pattern in the blood neutrophil count in six patients who had relapsed following BMT (allogeneic in three patients, allogeneic with T-cell depletion in two patients, and syngeneic in one patient). The variables tested included the site of origin of the CML stem cells responsible for relapse (marrow alone versus marrow and extramedullary sites), the minimum number of CML stem cells responsible for relapse, and the time delay between BMT and the onset of relapse. Model profiles based on the observed values were obtained in each case. The simulations pointed to the fact that relapse began from a small number of CML cells in medullary and extramedullary sites. The time delay between BMT and the onset of relapse varied from 15 to 240 days. We suggest that this biomathematical model should be further investigated as a possible means of predicting outcome and guiding the treatment for patients with CML relapsing after BMT.  (+info)

Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. (28/5038)

CREB-binding protein (CBP) and the closely related adenovirus E1A-associated 300-kD protein (p300) function as coactivators of transcription factors such as CREB, c-Fos, c-Jun, c-Myb, and several nuclear receptors. To study the roles of CBP in embryonic development, we generated CBP homozygous mutant mouse embryos that expressed a truncated form of CBP protein (1-1084 out of 2441 residues). The embryos died between embryonic days 9.5 (E9.5) and E10.5 and exhibited a defect in neural tube closure. They appeared pale and showed decreases in erythroid cells and colony-forming cells (CFCs) in the yolk sac, suggesting defects in primitive hematopoiesis. Immunohistochemistry with an anti-PECAM antibody showed a lack of vascular network formation. Organ culture of para-aortic splanchnopleural mesoderm (P-Sp) with stromal cells (OP9) showed an autonomous abnormality of putative endothelial precursors, which may induce the microenvironmental defect in hematopoiesis. In addition, these defects were partially rescued by the addition of VEGF to this culture. Our analyses demonstrate that CBP plays an essential role in hematopoiesis and vasculo-angiogenesis.  (+info)

Recombinant human thrombopoietin in combination with granulocyte colony-stimulating factor enhances mobilization of peripheral blood progenitor cells, increases peripheral blood platelet concentration, and accelerates hematopoietic recovery following high-dose chemotherapy. (29/5038)

Lineage-specific growth factors mobilize peripheral blood progenitor cells (PBPC) and accelerate hematopoietic recovery after high-dose chemotherapy. Recombinant human thrombopoietin (rhTPO) may further increase the progenitor-cell content and regenerating potential of PBPC products. We evaluated the safety and activity of rhTPO as a PBPC mobilizer in combination with granulocyte colony-stimulating factor (G-CSF) in 29 breast cancer patients treated with high-dose chemotherapy followed by PBPC reinfusion. Initially, patients received escalating single doses of rhTPO intravenously (IV) at 0.6, 1.2, or 2.4 micrograms/kg, on day 1. Subsequent patients received rhTPO 0.6 or 0.3 micrograms/kg on days -3, -1, and 1, or 0.6 micrograms/kg on days -1 and 1. G-CSF, 5 micrograms/kg IV or subcutaneously (SC) twice daily, was started on day 3 and continued through aphereses. Twenty comparable, concurrently and identically treated patients (who were eligible and would have been treated on protocol but for the lack of study opening) mobilized with G-CSF alone served as comparisons. CD34(+) cell yields were substantially higher with the first apheresis following rhTPO and G-CSF versus G-CSF alone: 4.1 x 10(6)/kg (range, 1.3 to 17.6) versus 0.8 x 10(6)/ kg (range, 0.3 to 4.2), P =.0003. The targeted minimum yield of 3 x 10(6) CD34(+) cells/kg was procured following a single apheresis procedure in 61% of the rhTPO and G-CSF-mobilized group versus 10% of G-CSF-mobilized patients (P =.001). In rhTPO and G-CSF mobilized patients, granulocyte (day 8 v 9, P =.0001) and platelet recovery (day 9 v 10, P =.07) were accelerated, and fewer erythrocyte (3 v 4, P =.02) and platelet (4 v 5, P =.02) transfusions were needed compared with G-CSF-mobilized patients. Peripheral blood platelet counts, following rhTPO and G-CSF, were increased by greater than 100% and the platelet content of PBPC products by 60% to 110% on the first and second days of aphereses (P <.0001) with the greatest effect seen with repeated dosing of rhTPO at 0.6 microgram/kg. rhTPO is safe and well tolerated as a mobilizing agent before PBPC collection. Mobilization with rhTPO and G-CSF, in comparison to a comparable, nonrandomized G-CSF-mobilized group of patients, decreases the number of apheresis procedures required, may accelerate hematopoietic recovery, and may reduce the number of transfusions required following high-dose chemotherapy for breast cancer.  (+info)

Allogeneic stem cell transplantation for agnogenic myeloid metaplasia: a European Group for Blood and Marrow Transplantation, Societe Francaise de Greffe de Moelle, Gruppo Italiano per il Trapianto del Midollo Osseo, and Fred Hutchinson Cancer Research Center Collaborative Study. (30/5038)

Agnogenic myeloid metaplasia (AMM) is a chronic myeloproliferative disorder in which patients with poor prognostic features, receiving conventional treatments, have a median survival of less than 3 years. In this retrospective multicenter study, we analyze the results and try to define the indications for allogeneic stem cell transplantation in AMM. From January 1979 to November 1997, 55 patients with a median age of 42 years were transplanted from HLA-matched related (n = 49) or alternative (n = 6) donors for AMM. A multivariate analysis was conducted to identify factors associated with posttransplant outcome. The median posttransplant follow-up was 36 months (range, 6 to 223). The 5-year probability of survival was 47% +/- 8% for the overall group, and 54% +/- 8% for patients receiving an unmanipulated HLA-matched related transplant. The 1-year probability of transplant-related mortality was 27% +/- 6%. Hemoglobin level +info)

Partial block in B lymphocyte development at the transition into the pre-B cell receptor stage in Vpre-B1-deficient mice. (31/5038)

The surrogate light chain (SL) is composed of two polypeptides, Vpre-B and lambda5. In large pre-BII cells the SL chain associates with Ig mu heavy chain (muH) to form the pre-B cell receptor (pre-BCR). In mice there are two Vpre-B genes which are 98% identical within the coding regions. The two genes are co-expressed at the RNA level and encode functional proteins that can assemble with lambda5. However, it is not known whether both gene products serve the same function in vivo. Here we have established mice that lack the Vpre-B1 gene (VpreB1(-/-)), but still express the Vpre-B2 gene, both as RNA and protein. In Vpre-B1(-/-) mice, the bone marrow cellularity and the percentage of B220+ cells is normal. However, among the B220+ cells, the percentage of pre-BI cells is increased, and the percentage of pre-BII and immature B cells is slightly decreased, suggesting that the lack of Vpre-B1 causes a partial block at the transition from pre-BI to pre-BII cells, i.e. into the pre-BCR stage. The number of cells that produce a functional pre-BCR is thus lower, but the cells that reach this stage are normal as they can be expanded by proliferation and then differentiate into more mature cells. The spleens of Vpre-B1 homozygous mutant mice show normal numbers of B and T lymphocytes. Moreover, the Ig loci are allelicly excluded and the homozygous mutant mice respond with normal levels of antigen-specific antibodies to T-dependent antigens. These results demonstrate that VpreB2 alone is capable of supporting B lymphocyte development in the bone marrow and can give rise to immuno-competent cells in the periphery.  (+info)

Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. (32/5038)

Cbfa2 (AML1) encodes the DNA-binding subunit of a transcription factor in the small family of core-binding factors (CBFs). Cbfa2 is required for the differentiation of all definitive hematopoietic cells, but not for primitive erythropoiesis. Here we show that Cbfa2 is expressed in definitive hematopoietic progenitor cells, and in endothelial cells in sites from which these hematopoietic cells are thought to emerge. Endothelial cells expressing Cbfa2 are in the yolk sac, the vitelline and umbilical arteries, and in the ventral aspect of the dorsal aorta in the aorta/genital ridge/mesonephros (AGM) region. Endothelial cells lining the dorsal aspect of the aorta, and elsewhere in the embryo, do not express Cbfa2. Cbfa2 appears to be required for maintenance of Cbfa2 expression in the endothelium, and for the formation of intra-aortic hematopoietic clusters from the endothelium.  (+info)