Mechanism of exercise-induced ocular hypotension. (17/3107)

PURPOSE: Although acute dynamic exercise reduces intraocular pressure (IOP), the factors that provoke this response remain ill-defined. To determine whether changes in colloid osmotic pressure (COP) cause the IOP changes during exercise, standardized exercise was performed after dehydration and hydration with isosmotic fluid. METHODS: Progressive cycle ergometer exercise to volitional exhaustion was performed after 4 hours' dehydration, and after hydration with 946 ml isosmotic liquid (345 mOsM). In each experiment, venous blood taken before and immediately after exercise was analyzed for hematocrit, plasma protein concentration, total plasma osmolality, and plasma COP. RESULTS: Exercise in both experiments significantly reduced IOP and elevated COP (each P < 0.01). Dehydration, compared with hydration, also significantly reduced IOP and elevated COP, when measured before and after exercise (P < 0.05). The correlation of mean IOP with mean COP, over the entire range created by varying exercise and hydration statuses, was statistically significant (r = -0.99; P < 0.001). In contrast, other indexes of hydration status, including hematocrit, total plasma osmolality, and plasma protein concentration, failed to change as IOP changed and failed to correlate with IOP, on either a group or individual basis, in conditions of varying levels of exercise and hydration. CONCLUSIONS: Acute dynamic exercise and isosmotic fluid ingestion each seem to change IOP through changes in COP.  (+info)

Responses of abdominal vascular capacitance in the anaesthetized dog to changes in carotid sinus pressure. (18/3107)

1. The abdominal circulation of anaesthetized dogs was vascularly isolated without opening the abdomen, by cutting or tying all structures immediately above the diaphragm and tying the proximal ends of the hind limbs. The region was perfused at constant flow through the aorta and drained at constant pressure from the inferior vena cava. 2. Vascular resistance responses were expressed as the changes in perfusion pressure and capacitance responses were determined by integrating changes in vena caval outflow. 3. Decreasing the pressure in the isolated carotid sinuses over the whole baroreceptor sensitivity range increased mean perfusion pressure from 91 to 149 mmHg (a 67% increase in resistance) and decreased mean capacitance by 111 ml. (5 ml. kg-1). 4. The range of carotid sinus pressures over which capacitance responses occurred was at a significantly higher level than the corresponding range for resistance responses. 5. Comparison of the reflex responses with the responses to direct stimulation of efferent sympathetic nerves shows that quantitatively similar responses of resistance and capacitance to those induced by a large step decrease in carotid pressure could be produced by stimulating maximally the efferent sympathetic nerves at 5 Hz. These results also suggest that at all levels of carotid sinus pressure there is no difference in the impulse traffic to resistance and capacitance vessels.  (+info)

Influence of platelet-activating factor on cerebral microcirculation in rats: part 1. Systemic application. (19/3107)

BACKGROUND AND PURPOSE: Platelet-activating factor (PAF) has been demonstrated to have a mediator function in shock, with some of its deleterious effects being attributed to its influence on microcirculation. Systemic PAF concentrations as found in shock could also compromise the cerebral microcirculation. Our purpose in the present study was to examine the influence of systemically applied PAF on microvascular perfusion and leukocyte-endothelium interactions in cerebral microvessels. METHODS: A closed cranial window technique was used for intravital fluorescence microscopy of the brain surface. PAF was infused in concentrations of 10(-12), 10(-9), and 10(-6) mol/L into the carotid artery (5 mL/h for 20 min) of Sprague-Dawley rats (n=30). The selective PAF receptor antagonist WEB 2170BS (2 mg/kg body weight) was used to inhibit specific PAF effects. RESULTS: The number of leukocytes (cells/100 microm. min) rolling along or adhering at the venular endothelium increased following infusion of PAF 10(-6) mol/L from 7.7+/-2.5 to 24.4+/-8.9 (P<0.05) and from 1.9+/-0.5 to 6.9+/-2.2 (P<0.05), respectively, within 2 hours. Mean arterial pressure decreased from 92+/-22 mm Hg to 49+/-17 mm Hg (P<0.05). The lower concentrations of PAF were less effective to decrease mean arterial pressure but also induced leukocyte-endothelium interactions. The intravenous administration of WEB 2170BS 15 min before the infusion of PAF 10(-6) mol/L prevented both systemic hypotension and activation of leukocyte-endothelium interactions. CONCLUSIONS: Increased systemic blood levels of PAF as found during shock can not only cause systemic arterial hypotension but also induce leukocyte-endothelium interactions in cerebral venules. The activation of leukocytes was found to be independent of PAF-induced arterial hypotension. The specificity of these results is confirmed by the findings that WEB 2170BS could inhibit the PAF-induced systemic hypotension as well as the activation of leukocytes.  (+info)

Ambulatory management of common forms of anemia. (20/3107)

Anemia is a prevalent condition with a variety of underlying causes. Once the etiology has been established, many forms of anemia can be easily managed by the family physician. Iron deficiency, the most common form of anemia, may be treated orally or, rarely, parenterally. Vitamin B12 deficiency has traditionally been treated with intramuscular injections, although oral and intranasal preparations are also available. The treatment of folate deficiency is straightforward, relying on oral supplements. Folic acid supplementation is also recommended for women of child-bearing age to reduce their risk of neural tube defects. Current research focuses on folate's role in reducing the risk of premature cardiovascular disease.  (+info)

Neutrophil activation and hemostatic changes in healthy donors receiving granulocyte colony-stimulating factor. (21/3107)

Granulocyte colony-stimulating factor (G-CSF) enhances neutrophil functions in vitro and in vivo. It is known that neutrophil-derived products can alter the hemostatic balance. To understand whether polymorphonuclear leukocyte (PMN) activation, measured as PMN degranulation and phenotypical change, may be associated to hemostatic alterations in vivo, we have studied the effect of recombinant human G-CSF (rHuG-CSF) administration on leukocyte parameters and hemostatic variables in healthy donors of hematopoietic progenitor cells (HPCs). Twenty-six consecutive healthy donors receiving 10 micrograms/kg/d rHuG-CSF subcutaneously for 5 to 7 days to mobilize HPCs for allogeneic transplants were included in the study. All of them responded to rHuG-CSF with a significant white blood cell count increase. Blood samples were drawn before therapy on days 2 and 5 and 1 week after stopping rHuG-CSF treatment. The following parameters were evaluated: (1) PMN activation parameters, ie, surface CD11b/CD18 antigen expression, plasma elastase antigen levels and cellular elastase activity; (2) plasma markers of endothelium activation, ie, thrombomodulin (TM) and von Willebrand factor (vWF) antigens; (3) plasma markers of blood coagulation activation, ie, F1+2, TAT complex, D-dimer; and (4) mononuclear cell (MNC) procoagulant activity (PCA) expression. The results show that, after starting rHuG-CSF, an in vivo PMN activation occurred, as demonstrated by the significant increment of surface CD11b/CD18 and plasma elastase antigen levels. Moreover, PMN cellular elastase activity, which was significantly increased at 1 day of treatment, returned to baseline at day 5 to 6, in correspondence with the elastase antigen peak in the circulation. This change was accompanied by a parallel significant increase in plasma levels of the two endothelial and the three coagulation markers. The PCA generated in vitro by unstimulated MNC isolated from rHuG-CSF-treated subjects was not different from that of control cells from untreated subjects. However, endotoxin-stimulated MNC isolated from on-treatment individuals produced significantly more PCA compared with both baseline and control samples. All of the parameters were decreased or normal 1 week after stopping treatment. These data show that rHuG-CSF induces PMN activation and transiently affects some hemostatic variables in healthy HPC donor subjects. The clinical significance of these findings remains to be established.  (+info)

Circulatory changes induced by isovolumic increase in red cell mass in fetal lambs. (22/3107)

AIM: To verify whether extra uterine changes in total peripheral vascular resistance and cardiac output, caused by raised haematocrit, occur in fetal life and if they can be documented using conventional ultrasound techniques. METHODS: An exchange transfusion with packed red cells was performed on five fetal lambs at 140 days of gestation (weight 3.44, SD 0.48 kg); three others were used as controls. The haematocrit was raised from 44 +/- 3 to 64 (SD2)%. RESULTS: Body temperature, blood gas, and pH remained within normal limits. Blood viscosity increased from 5.3 (0.3) to 9.6 (1.6) cps. Combined cardiac output fell to 30% of its initial value. The pulsatility index (PI) remained unchanged in the umbilical artery (0.66, SD 0.1) and descending aorta (1.3, SD 0.3). A significant positive correlation was found between haematocrit and PI only in the carotid artery (r = 0.67, p < 0.01). CONCLUSION: In the fetus, as in adults, an increase in blood viscosity is associated with a fall in cardiac output. However, the low resistance and the relative inertia of the placental vascular bed blunt the velocimetric changes that could be induced in the lower body vascular system by an increase in resistance. Such changes were observed only in the carotid artery. These results could be of interest in the Doppler monitoring of human fetuses at risk of an abnormal increase in their haematocrit.  (+info)

Gene therapy for renal anemia in mice with polycystic kidney using an adenovirus vector encoding the human erythropoietin gene. (23/3107)

BACKGROUND: Recombinant human erythropoietin (rHuEPO) is primarily used for patients with anemia associated with end-stage renal disease. We evaluated the efficacy of EPO gene therapy using adenovirus vector for chronic renal failure mice expressing severe renal anemia. METHODS: Recombinant HuEPO gene transfer to mesothelial cells was performed in vitro and in vivo. Recombinant replication-deficient adenoviruses containing rHuEPO cDNA (AdCMVEPO), E. coli lacZ gene (AdCMVlacZ), or an nonexogenous gene (AdNull as control vector) driven by the cytomegalovirus promotor/enhancer were constructed. The oligosaccharides associated with the rHuEPO from AdCMVEPO-treated mesothelial cells were analyzed. For in vivo study, the DBA/2FG-pcy mouse, a model for human autosomal recessive polycystic kidney disease resulting in chronic renal failure with progressive anemia, was used. RESULTS: The sialylated oligosaccharides associated with the rHuEPO produced in AdCMVEPO-treated mesothelial cells occupied 78 +/- 0.7% of the total oligosaccharide pool. A single intraperitoneal administration of AdCMVEPO induced rHuEPO synthesis in the peritoneal cells and a marked increase in erythrocyte production. The maximal increase in hematocrit (43 +/- 4%) was observed on day 28, and it remained elevated for 40 days. CONCLUSION: These results indicate that intraperitoneal administration of AdCMVEPO improves renal anemia in mice with chronic renal failure and that the mesothelial cell is an appropriate target cell for gene transfer.  (+info)

Effect of normalization of hematocrit on brain circulation and metabolism in hemodialysis patients. (24/3107)

Full correction of anemia with recombinant human erythropoietin (rhEPO) has been reported to reduce the risk of cardiovascular morbidity and mortality and improve the quality of life in hemodialysis (HD) patients. Effects of normalization of hematocrit on cerebral blood flow and oxygen metabolism were investigated by positron emission tomography. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), oxygen extraction ratio (rOER), and metabolic rate for oxygen (rCMRO2) were measured in seven HD patients before and after correction of anemia and compared with those in six healthy control subjects. In addition, blood rheology before and on rhEPO therapy was measured in HD patients, which included blood viscosity, plasma viscosity, erythrocyte fluidity, and erythrocyte aggregability. The results showed that plasma viscosity was high (1.51+/-0.19 mPa x s) and erythrocyte fluidity was low (85.8+/-4.8 Pa(-1) x s(-1)), while whole blood viscosity was within the normal range (3.72+/-0.38 mPa x s) before rhEPO therapy. After treatment, the hematocrit rose significantly from 29.3+/-3.3 to 42.4+/-2.2% (P<0.001), accompanied by a significant increase in the whole blood viscosity to 4.57+/-0.16 mPa x s, nonsignificant decrease in erythrocyte fluidity to 79.9+/-7.4 mPa(-1) x s(-1) and nonsignificant change in plasma viscosity (1.46+/-1.3 mPa x s). Positron emission tomography measurements revealed that by normalization of hematocrit, rCBF significantly decreased from 65+/-11 to 48+/-12 ml/min per 100 cm3 (P<0.05). However, arterial oxygen content (caO2) significantly increased from 5.7+/-0.7 to 8.0+/-0.4 mmol/L (P<0.0001), rOER of the hemispheres significantly increased from 44+/-3 to 51+/-6% (P<0.05) and became significantly higher than healthy control subjects (P<0.05). In addition, rCBV significantly increased from 3.5+/-0.5 to 4.6+/-0.6 ml/100 cc brain tissue. The results showed that oxygen supply to the brain tissue increased with normalization of hematocrit, but it was accompanied by increased oxygen extraction in the brain tissue. This may be assumed to be related to the decrease of erythrocyte velocity in the cerebral capillaries as a result of the decreased blood deformability and the increased plasma viscosity.  (+info)