Requirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. (17/1495)

Two new genes, mrpH and mrpJ, were identified downstream of mrpG in the mrp gene cluster encoding mannose-resistant Proteus-like (MR/P) fimbriae of uropathogenic Proteus mirabilis. Since the predicted MrpH has 30% amino acid sequence identity to PapG, the Galalpha(1-4)Gal-binding adhesin of Escherichia coli P fimbriae, we hypothesized that mrpH encodes the functional MR/P hemagglutinin. MR/P fimbriae, expressed in E. coli DH5alpha, conferred on bacteria both the ability to cause mannose-resistant hemagglutination and the ability to aggregate to form pellicles on the broth surface. Both a DeltamrpH mutant expressed in E. coli DH5alpha and an isogenic mrpH::aphA mutant of P. mirabilis were unable to produce normal MR/P fimbriae efficiently, suggesting that MrpH was involved in fimbrial assembly. Amino acid residue substitution of the N-terminal cysteine residues (C66S and C128S) of MrpH abolished the receptor-binding activity (hemagglutinating ability) of MrpH but allowed normal fimbrial assembly, supporting the notion that MrpH was the functional MR/P hemagglutinin. Immunogold electron microscopy of P. mirabilis HI4320 revealed that MrpH was located at the tip of MR/P fimbriae, also consistent with its role in receptor binding. The isogenic mrpH::aphA mutant of HI4320 was less able to colonize the urine, bladder, and kidneys in a mouse model of ascending urinary tract infection (P < 0.01), and therefore MR/P fimbriae contribute significantly to bacterial colonization in mice. While there are similarities between P. mirabilis MR/P and E. coli P fimbriae, there are more notable differences: (i) synthesis of the MrpH adhesin is required to initiate fimbrial assembly, (ii) MR/P fimbriae confer an aggregation phenotype, (iii) site-directed mutation of specific residues can abolish receptor binding but allows fimbrial assembly, and (iv) mutation of the adhesin gene abolishes virulence in a mouse model of ascending urinary tract infection.  (+info)

Modulation of major histocompatibility complex protein expression by human gamma interferon mediated by cysteine proteinase-adhesin polyproteins of Porphyromonas gingivalis. (18/1495)

Cysteine proteinases have been emphasized in the virulence of Porphyromonas gingivalis in chronic periodontitis. These hydrolases may promote the degradation of extracellular matrix proteins and disrupt components of the immune system. In this study it was shown that purified Arg-gingipain and Lys-gingipain inhibited expression of class II major histocompatibility complex (MHC) proteins in response to the stimulation of endothelial cells with human gamma interferon (IFN-gamma). Treatment with the cysteine proteinases resulted in a rapid shift in the apparent molecular size of IFN-gamma from 17 to 15 kDa, as shown by Western blot analysis, a response which also occurred in the presence of serum. Further, glycosylated natural IFN-gamma from human leukocytes and unglycosylated recombinant IFN-gamma from Escherichia coli were both digested by the cysteine proteinases. Immunoblot analysis indicated that cleavage within the carboxyl terminus of recombinant IFN-gamma correlated with the loss of induction of MHC class II expression as monitored by analytical flow cytometry. No hydrolysis of MHC class II molecules or human IFN-gamma receptor by these proteinases was detected by Western blot analysis. These findings suggest that P. gingivalis cysteine proteinases may alter the cytokine network at the point of infection through the cleavage of IFN-gamma. Degradation of IFN-gamma could have important consequences for the recruitment and activation of leukocytes and therefore may contribute significantly to the destruction of the periodontal attachment.  (+info)

A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. (19/1495)

While much has been learned regarding the genetic basis of host-pathogen interactions, less is known about the molecular basis of a pathogen's survival in the environment. Biofilm formation on abiotic surfaces represents a survival strategy utilized by many microbes. Here it is shown that Vibrio cholerae El Tor does not use the virulence-associated toxin-coregulated pilus to form biofilms on borosilicate but rather uses the mannose-sensitive hemagglutinin (MSHA) pilus, which plays no role in pathogenicity. In contrast, attachment of V. cholerae to chitin is shown to be independent of the MSHA pilus, suggesting divergent pathways for biofilm formation on nutritive and nonnutritive abiotic surfaces.  (+info)

The proto-oncogene c-Cbl is a negative regulator of DNA synthesis initiated by both receptor and cytoplasmic tyrosine kinases. (20/1495)

In C. elegans, genetic and biochemical data indicate that the Cbl homolog Sli-1 attenuates Let-23 (EGFR) signaling. To investigate whether c-Cbhl might have a role in mammalian growth factor-mediated mitogenic signaling, we microinjected NIH3T3 mouse fibroblasts with expression plasmids encoding wt and G306ECbl (a 'loss of function' mutant identified in C. elegans). We observed inhibition of PDGF BB- and EGF-induced DNA synthesis by wt Cbl but not the mutant. Microinjection of two different affinity purified polyclonal antisera against Cbl boosted a suboptimal PDGF-stimulated mitogenic response. The inhibition of both PDGF BB- and EGF-induced DNA synthesis by wt Cbl was reversed by co-expression with Myc but not with Fos. DNA synthesis initiated by constitutively activated Src was also blocked by Cbl expression, but curiously by the G306E mutant as well. These data are all consistent with the proposition that Cbl negatively affects mitogenic signaling in mammalian fibroblasts.  (+info)

Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis. Construction of mutants with a combination of rgpA, rgpB, kgp, and hagA. (21/1495)

Porphyromonas gingivalis produces arginine-specific cysteine proteinase (Arg-gingipain, RGP) and lysine-specific cysteine proteinase (Lys-gingipain, KGP) in the extracellular and cell-associated forms. Two separate genes (rgpA and rgpB) and a single gene (kgp) have been found to encode RGP and KGP, respectively. We constructed rgpA rgpB kgp triple mutants by homologous recombination with cloned rgp and kgp DNA interrupted by drug resistance gene markers. The triple mutants showed no RGP or KGP activity in either cell extracts or culture supernatants. The culture supernatants of the triple mutants grown in a rich medium had no proteolytic activity toward bovine serum albumin or gelatin derived from human type I collagen. Moreover, the mutants did not grow in a defined medium containing bovine serum albumin as the sole carbon/energy source. These results indicate that the proteolytic activity of P. gingivalis toward bovine serum albumin and gelatin derived from human type I collagen appears to be attributable to RGP and KGP. The hemagglutinin gene hagA of P. gingivalis possesses the adhesin domain regions responsible for hemagglutination and hemoglobin binding that are also located in the C-terminal regions of rgpA and kgp. A rgpA kgp hagA triple mutant constructed in this study exhibited no hemagglutination using sheep erythrocytes or hemoglobin binding activity, as determined by a solid-phase binding assay with horseradish peroxidase-conjugated human hemoglobin, indicating that the adhesin domains seem to be particularly important for P. gingivalis cells to agglutinate erythrocytes and bind hemoglobin, leading to heme acquisition.  (+info)

Porphyrin-mediated binding to hemoglobin by the HA2 domain of cysteine proteinases (gingipains) and hemagglutinins from the periodontal pathogen Porphyromonas gingivalis. (22/1495)

Heme binding and uptake are considered fundamental to the growth and virulence of the gram-negative periodontal pathogen Porphyromonas gingivalis. We therefore examined the potential role of the dominant P. gingivalis cysteine proteinases (gingipains) in the acquisition of heme from the environment. A recombinant hemoglobin-binding domain that is conserved between two predominant gingipains (domain HA2) demonstrated tight binding to hemin (Kd = 16 nM), and binding was inhibited by iron-free protoporphyrin IX (Ki = 2.5 microM). Hemoglobin binding to the gingipains and the recombinant HA2 (rHA2) domain (Kd = 2.1 nM) was also inhibited by protoporphyrin IX (Ki = 10 microM), demonstrating an essential interaction between the HA2 domain and the heme moiety in hemoglobin binding. Binding of rHA2 with either hemin, protoporphyrin IX, or hematoporphyrin was abolished by establishing covalent linkage of the protoporphyrin propionic acid side chains to fixed amines, demonstrating specific and directed binding of rHA2 to these protoporphyrins. A monoclonal antibody which recognizes a peptide epitope within the HA2 domain was employed to demonstrate that HA2-associated hemoglobin-binding activity was expressed and released by P. gingivalis cells in a batch culture, in parallel with proteinase activity. Cysteine proteinases from P. gingivalis appear to be multidomain proteins with functions for hemagglutination, erythrocyte lysis, proteolysis, and heme binding, as demonstrated here. Detailed understanding of the biochemical pathways for heme acquisition in P. gingivalis may allow precise targeting of this critical metabolic aspect for periodontal disease prevention.  (+info)

Endogenous galectins and effect of galectin hapten inhibitors on the differentiation of the chick mesonephros. (23/1495)

Galectins are galactoside-binding lectins. In the mesonephros of the chick embryo, the 16-kDa galectin is abundant in the glomerular and tubular basement membranes where it colocalizes with fibronectin and laminin. To test whether galectin-glycoprotein interactions could play a role in mesonephric development, the effects of the galectin hapten inhibitors thiodigalactoside (TDG) and lactose on the differentiation of the cultured mesonephros were investigated. When compared to control saccharide-free or maltose-treated cultures, mesonephroi cultured in the presence of TDG and lactose exhibited defects in tissue organization. These included a distorted tubule shape, pseudo-stratification of the tubular epithelium, and detachment of glomerular podocytes from the basement membrane. The presence of molecular differentiation markers in the developing mesonephros was investigated. In vivo, expression of the epithelial-specific cell adhesion molecule E-cadherin is restricted to differentiated tubular epithelial cells, whereas the intermediate filament protein vimentin is present in mesonephrogenic mesenchyme and is undetectable in tubular epithelial cells. In mesonephroi cultured in the absence of sugars or in the presence of maltose, the expression pattern of these two marker molecules resembles that found in the mesonephros in vivo. In contrast, in the mesonephroi cultured in the presence of TDG and lactose, the epithelial tubular cells expressing E-cadherin also express vimentin. Re-expression of vimentin in the tubular epithelial cells could indicate a partial reversal to a mesenchymal phenotype. Results suggest that galectin-glycoprotein interactions in the basement membrane are important in the maintenance of the renal epithelial phenotype. Dev Dyn 1999;215:248-263.  (+info)

Variable carbohydrate modifications to the catalytic chains of the RgpA and RgpB proteases of Porphyromonas gingivalis W50. (24/1495)

Proteases of Porphyromonas gingivalis are considered to be important virulence determinants of this periodontal bacterium. Several biochemical isoforms of arginine-specific proteases are derived from rgpA and rgpB. HRgpA is a heterodimer composed of the catalytic alpha chain noncovalently associated with a beta adhesin chain derived from the C terminus of the initial full-length translation product. The catalytic alpha chain is also present as a monomer (RgpA) either free in solution or associated with membranes. rgpB lacks the coding region for the adhesin domain present in rgpA and yields only monomeric forms (RgpB) which again may be soluble or membrane associated. In this study, the catalytic chains of this unusual group of enzymes are shown to be differentially modified by the posttranslational addition of carbohydrate. A monoclonal antibody (MAb 1B5) raised to the monomeric RgpA did not react with the corresponding recombinant RgpA alpha chain expressed in Escherichia coli but was immunoreactive with P. gingivalis lipopolysaccharide. MAb 1B5 also reacted with the membrane-associated forms of RgpA and RgpB but not with the heterodimeric HRgpA and the soluble form of RgpB. RgpA treated with denaturants was capable of binding to MAb 1B5 whereas treatment with periodate abolished this binding, suggesting the presence of carbohydrate residues within the epitope. Chemical deglycosylation abolished immunoreactivity with MAb 1B5 and caused a approximately 30% reduction in the size of the membrane-associated enzymes. Monosaccharide analysis of HRgpA and RgpA demonstrated 2.1 and 14.4%, respectively, carbohydrate by weight of protein. Furthermore, distinct differences were detected in their monosaccharide compositions, indicating that these protease isoforms are modified not only to different extents but also with different sugars. The variable nature of these additions may have a significant effect on the structure, stability, and immune recognition of these protease glycoproteins.  (+info)