Influenza A virus-binding activity of glycoglycerolipids of aquatic bacteria. (49/2009)

As the aqueous sphere has been proposed to be an important source medium for the virus infection of land animals, the glycolipids of some aquatic organisms were examined for human influenza A virus-binding activity. Active compounds were not found among the eight echinoderm gangliosides, but two active non-sialylated glycoglycerolipids were isolated from an aquatic bacterium, Corynebacterium aquaticum. The structural formula of one of them, H632A, was elucidated to be 1-14-methyl-hexadecanoyl-3-alpha-D-galactopyranosyl-(1-->3)-6-(12-met hyl-tetradecanoyl)-1-alpha-D-mannopyranosyl]-sn-glycerol. The latter together with reported one elsewhere, S365A, 1-14-methyl-hexadecanoyl-3-[alpha-D-mannopyranosyl-(1-->3)-6-(12-meth yl-tetradecanoyl)-1-alpha-D-mannopyranosyl]-sn-glycerol, apparently bound to three human influenza viruses, A/PR/8/34 (H1N1), A/Aichi/2/68 (H3N2), and A/Memphis/1/71 (H3N2), exhibiting 7-12% (H632A) and 10-22% (S365A) of the activities of the control substances (Neu5Acalpha2-3-paragloboside and Neu5Acalpha2-6- paragloboside). Additionally, these glycolipids were assumed to have virus-neutralizing activities for the following two reasons: (i) The hemagglutination and hemolysis activities of the viruses were inhibited by the glycolipid. (ii) The leakage of a cytosolic enzyme (lactate dehydrogenase) from Madin-Darby canine kidney cells on virus infection was prevented by the glycolipids to nearly the same extent as by fetuin. This is the first evidence of the binding- and neutralizing-abilities of native glycoglycerolipids as to influenza viruses.  (+info)

Purification and characterization of a Neu5Acalpha2-6Galbeta1-4Glc/GlcNAc-specific lectin from the fruiting body of the polypore mushroom Polyporus squamosus. (50/2009)

A lectin has been purified from the carpophores of the mushroom Polyporus squamosus by a combination of affinity chromatography on beta-D-galactosyl-Synsorb and ion-exchange chromatography on DEAE-Sephacel. Gel filtration chromatography, SDS-polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing indicated that the native lectin, designated P. squamosus agglutinin, is composed of two identical 28-kDa subunits associated by noncovalent bonds. P. squamosus agglutinin agglutinated human A, B, and O and rabbit red blood cells but precipitated only with human alpha(2)-macroglobulin, of many glycoproteins and polysaccharides tested. The detailed carbohydrate binding properties of the purified lectin were elucidated using three different approaches, i.e. precipitation inhibition assay (in solution binding assay), fluorescence quenching studies, and glycolipid binding by lectin staining on high-performance thin layer chromatography (solid-phase binding assay). Based on the results obtained by these assays, we conclude that although the P. squamosus lectin binds beta-D-galactosides, it has an extended carbohydrate-combining site that exhibits highest specificity and affinity toward nonreducing terminal Neu5Acalpha2, 6Galbeta1,4Glc/GlcNAc (6'-sialylated type II chain) of N-glycans (2000-fold stronger than toward galactose). The strict specificity of the lectin for alpha2,6-linked sialic acid renders this lectin a valuable tool for glycobiological studies in biomedical and cancer research.  (+info)

Filamentous particle formation by human parainfluenza virus type 2. (51/2009)

Some paramyxoviruses form long filamentous virus particles: however, the determinants of filament formation and the role of such particles in virus transmission and pathogenicity are not clearly defined. By using conventional immunofluorescence microscopy, we found that human parainfluenza virus type 2 (HPIV2) forms filamentous particles ranging from 5 to 15 microm in length in virus-infected, polarized epithelial cells. The formation of filamentous particles was found to be virus type-specific and was not observed when the same cell types were infected with parainfluenza virus type 3 or Sendai virus, suggesting that different paramyxovirus genera exhibit distinct morphological properties. HPIV2 filamentous particle formation was found to be inhibited by cytochalasin D (CD) or jasplakinolide treatment in a dose-dependent manner. In the presence of 4 microg/ml CD or 1 microM jasplakinolide, the formation of filamentous particles was completely abolished, although similar haemagglutination and p.f.u. titres of virus were found to be released into the culture medium at 24 h post-infection. These observations indicate that host cell components, including the actin microfilament network, are important determinants of the morphology of parainfluenza viruses. The predominance of filamentous particles in polarized epithelial cells may reflect specific pathogenic roles of these particles in infection of human epithelial tissues.  (+info)

A lectin from an edible mushroom Pleurotus ostreatus as a food intake-suppressing substance. (52/2009)

In an experiment in which rats were allowed free access to food and water, the rats did not eat the diet containing a mushroom Pleurotus ostreatus even if they were emaciated. A P. ostreatus lectin (POL) was isolated from the mushroom as the food intake-suppression principle. In hemagglutination inhibition assays, Me-alphaGalNAc was the most potent inhibitor among the monosaccharides tested. Among all the sugars tested, 2'-fucosyllactose (Fucalpha1-->2Galbeta1-->4Glc) was the strongest inhibitor and its inhibitory potency was five times greater than that of Me-alphaGalNAc. POL exhibited a binding ability to bovine submaxillary mucin (BSM) and asialo-BSM and the other glycoproteins were inert to the binding. The food intake-suppressing activity of POL was dependent on the dose. The diet containing 0.1% POL caused a 50% decrease in the food intake of rats against the control.  (+info)

Complement fixation by rheumatoid factor. (53/2009)

The capacity for fixation and activation of hemolytic complement by polyclonal IgM rheumatoid factors (RF) isolated from sera of patients with rheumatoid arthritis and monoclonal IgM-RF isolated from the cryoprecipitates of patients with IgM-IgG mixed cryoglobulinemia was examined. RF mixed with aggregated, reduced, and alkylated human IgG (Agg-R/A-IgG) in the fluid phase failed to significantly reduce the level of total hemolytic complement, CH50, or of individual complement components, C1, C2, C3, and C5. However, sheep erythrocytes (SRC) coated with Agg-R/A-IgG or with reduced and alkylated rabbit IgG anti-SRC antibody were hemolyzed by complement in the presence of polyclonal IgM-RF. Human and guinea pig complement worked equally well. The degree of hemolysis was in direct proportion to the hemagglutination titer of the RF against the same coated cells. Monoclonal IgM-RF, normal human IgM, and purified Waldenstrom macroglobulins without antiglobulin activity were all inert. Hemolysis of coated SRC by RF and complement was inhibited by prior treatment of the complement source with chelating agents, hydrazine, cobra venom factor, specific antisera to C1q, CR, C5, C6, or C8, or by heating at 56 degrees C for 30 min. Purified radiolabeled C4, C3, and C8 included in the complement source were bound to hemolysed SRC in direct proportion to the degree of hemolysis. These data indicate that polyclonal IgM-RF fix and activate complement via the classic pathway. The system described for assessing complement fixation by isolated RF is readily adaptable to use with whole human serum.  (+info)

Tolerance induction in TxXBT and TxXB mice. (54/2009)

Adult normal mice and those mice which had been thymectomized, X-irradiated, and reconstituted either with bone marrow cells and thymus cells (TxXBT) or with bone marrow cells along (TxXB), were given varying amounts (0.1-5 mg) of deaggregated soluble bovine serum albumin (sBSA). They were challenged 10 days later with an immunogenic form of BSA. TxXB mice were supplemented with normal thymus cells 3 days before the challenge. With any dose of sBSA, TxXBT and normal mice were made tolerant. Only 5 mg of sBSA, the highest dose in these experiments, was effective in inducing the tolerance in TxXB mice. The simultaneous administration of 5 mg of sBSA and 0.1 mg of alumprecipitated BSA plus 0.01 mg of endotoxin resulted in the priming in TxXBT mice but induced tolerance in TxXB mice. These results indicate that: (a) B-cell tolerance could be induced independently of the influence of T cells; (b) the tolerogen susceptibility of B cells may be lower than that of T cells; (c) such a weakly immunogenic agent as the mixture of tolerogen and immunogen could either activate the antibody response in the presence of T cells or induce B-cell tolerance in the absence of T cells.  (+info)

Susceptibility of piglets to rabbit hemorrhagic disease virus following experimental infection. (55/2009)

The possibility exists that rabbit hemorrhagic disease virus (RHDV) can be transmitted to swine, through lapinized hog cholera virus (HCV) vaccine. To investigate the infectivity of RHDV in swine, 16 four- to six-week-old piglets were inoculated subcutaneously with RHDV, and samples of liver, lung, spleen, kidney, bile, adrenal gland, tonsil, mesenteric lymph node, thymus, urine, buffy coat, and feces were collected from each of 2 animals on Days 0, 1, 2, 3, 5, 7, 14, and 28 post infection. Using reverse transcription-polymerase chain reaction, viral RNA was detected in most tissues by Day 3 and was absent after Day 5, except in lung and liver tissues, in which viral RNA was detected up to Day 14. Viral RNA was not detected in kidney, urine, feces or bile. Antibody responses, as detected by hemagglutination inhibition, were of low titer and short duration, and were similar in animals inoculated with viable RHD and in those given formalin-inactivated RHDV (n = 2). Neither viral RNA nor antibody were detected in the negative control or in the uninfected, in-contact animals.  (+info)

Protection studies on winter dysentery caused by bovine coronavirus in cattle using antigens prepared from infected cell lysates. (56/2009)

Cells infected with bovine coronavirus (BCV) were solubilized with Triton X-100 to yield a cell lysate (CL) antigen having high hemagglutinating (HA) titers. The antigen gave high HA titers using rat erythrocytes, suggesting that it contained large amounts of hemagglutinin esterase (HE) antigen. The CL antigen, combined with an oil adjuvant, was tested for protective and antibody-inducing activities in cattle. Four groups (2 cattle/group) of cattle were inoculated with CL antigen having HA titers of 16 000, 4000, 1000, and 250. Another group served as untreated controls. Two intramuscular inoculations were given at an interval of 3 wk. The animals were challenged with virus 1 wk after the second inoculation. The groups immunized with the CL antigen having an HA titer of 4000 or 16 000 produced hemagglutination inhibition (HI) antibody titers of > 320 and serum neutralizing (SN) antibody titers of > 1280. These groups of animals showed no clinical abnormalities after challenge. In the groups immunized with CL antigen at an HA titer of 1000 or 250, HI antibody titers were 40 to 160 and SN titers were 80 to 640. The cattle with HI antibody titers of > or = 160 and the SN titers of > or = 640 showed no clinical signs, but the cattle with the HI antibody titer < 80 and the SN antibody titer < 160 developed watery diarrhea and fever after challenge. These results indicate that CL antigen with high HA titer induces antibody production in cattle that provides effective protection against winter dysentery.  (+info)