New defective RNAs from citrus tristeza virus: evidence for a replicase-driven template switching mechanism in their generation. (1/552)

Defective RNAs (D-RNAs) ranging in size from 1968 to 2759 nt were detected in four citrus tristeza virus (CTV) isolates by hybridization of electroblotted dsRNAs with two probes specific for the 5'- and 3'-terminal genomic regions. The RNAs that hybridized with both probes were eluted, cloned and sequenced. Comparison with the sequences of the corresponding genomic regions of the helper virus showed, in all cases, over 99% nucleotide identity and direct repeats of 4-5 nt flanking or in the vicinity of the junction sites. The presence of the repeats from two separate genome locations suggests a replicase-driven template switching mechanism for the generation of these CTV D-RNAs. Two of the CTV isolates that differed greatly in their pathogenicity contained an identical D-RNA, suggesting that it is unlikely that this D-RNA is involved in symptom modulation, which may be caused by another factor.  (+info)

Virus promoters determine interference by defective RNAs: selective amplification of mini-RNA vectors and rescue from cDNA by a 3' copy-back ambisense rabies virus. (2/552)

Typical defective interfering (DI) RNAs are more successful in the competition for viral polymerase than the parental (helper) virus, which is mostly due to an altered DI promoter composition. Rabies virus (RV) internal deletion RNAs which possess the authentic RV terminal promoters, and which therefore are transcriptionally active and can be used as vectors for foreign gene expression, are poorly propagated in RV-infected cells and do not interfere with RV replication. To allow DI-like amplification and high-level gene expression from such mini-RNA vectors, we have used an engineered 3' copy-back (ambisense) helper RV in which the strong replication promoter of the antigenome was replaced with the 50-fold-weaker genome promoter. In cells coinfected with ambisense helper virus and mini-RNAs encoding chloramphenicol acetyltransferase (CAT) and luciferase, mini-RNAs were amplified to high levels. This was correlated with interference with helper virus replication, finally resulting in a clear predominance of mini-RNAs over helper virus. However, efficient successive passaging of mini-RNAs and high-level reporter gene activity could be achieved without adding exogenous helper virus, revealing a rather moderate degree of interference not precluding substantial HV propagation. Compared to infections with recombinant RV vectors expressing CAT, the availability of abundant mini-RNA templates led to increased levels of CAT mRNA such that CAT activities were augmented up to 250-fold, while virus gene transcription was kept to a minimum. We have also exploited the finding that internal deletion model RNAs behave like DI RNAs and are selectively amplified in the presence of ambisense helper virus to demonstrate for the first time RV-supported rescue of cDNA after transfection of mini-RNA cDNAs in ambisense RV-infected cells expressing T7 RNA polymerase.  (+info)

Multiple mitochondrial viruses in an isolate of the Dutch Elm disease fungus Ophiostoma novo-ulmi. (3/552)

The nucleotide sequences of three mitochondrial virus double-stranded (ds) RNAs, RNA-4 (2599 nucleotides), RNA-5 (2474 nucleotides), and RNA-6 (2343 nucleotides), in a diseased isolate Log1/3-8d2 (Ld) of the Dutch elm disease fungus Ophiostoma novo-ulmi have been determined. All these RNAs are A-U-rich (71-73% A + U residues). Using the fungal mitochondrial genetic code in which UGA codes for tryptophan, the positive-strand of each of RNAs 4, 5, and 6 contains a single open reading frame (ORF) with the potential to encode a protein of 783, 729, and 695 amino acids, respectively, all of which contain conserved motifs characteristic of RNA-dependent RNA polymerases (RdRps). Sequence comparisons showed that these RNAs are related to each other and to a previously characterized RNA, RNA-3a, from the same O. novo-ulmi isolate, especially within the RdRp-like motifs. However, the overall RNA nucleotide and RdRp amino acid sequence identities were relatively low (43-55% and 20-32%, respectively). The 5'- and 3'-terminal sequences of these RNAs are different, but they can all be folded into potentially stable stem-loop structures. Those of RNA-4 and RNA-6 have inverted complementarity, potentially forming panhandle structures. Their molecular and biological properties indicate that RNAs 3a, 4, 5, and 6 are the genomes of four different viruses, which replicate independently in the same cell. These four viruses are also related to a mitochondrial RNA virus from another fungus, Cryphonectria parasitica, recently designated the type species of the Mitovirus genus of the Narnaviridae family, and to a virus from the fungus Rhizoctonia solani. It is proposed that the four O. novo-ulmi mitochondrial viruses are assigned to the Mitovirus genus and designated O. novo-ulmi mitovirus (OnuMV) 3a-Ld, 4-Ld, 5-Ld, and 6-Ld, respectively. Northern blot analysis indicated that O. novo-ulmi Ld nucleic acid extracts contain more single-stranded (ss, positive-stranded) RNA than dsRNA for all three newly described mitoviruses. O. novo-ulmi RNA-7, previously believed to be a satellite-like RNA, is shown to be a defective RNA, derived from OnuMV4-Ld RNA by multiple internal deletions. OnuMV4-Ld is therefore the helper virus for the replication of both RNA-7 and another defective RNA, RNA-10. Sequence comparisons indicate that RNA-10 could be derived from RNA-7, as previously suggested, or derived directly from RNA-4.  (+info)

Frequency and stability of chromosomal integration of adenovirus vectors. (4/552)

One of the limitations of adenovirus vectors is the lack of machinery necessary for their integration into host chromosomes, resulting in short-term gene expression in dividing cells. We analyzed frequencies of integration and persistence of gene expression from integrated adenovirus vectors. Both E1-substituted and helper-dependent adenovirus vectors achieved similar integration efficiencies of approximately 10(-3) to 10(-5) per cell, with the helper-dependent vector showing slightly higher efficiencies. In stable cell pools, gene expression of the integrated vector persisted for at least 50 cell divisions without selection. However, some stable cell clones showed changes in gene expression, which were accompanied by structural changes in the integrated vector DNA.  (+info)

Tamplicon-7, a novel T-lymphotropic vector derived from human herpesvirus 7. (5/552)

We describe the derivation of a novel T-cell-defective virus vector employing the human herpesvirus 7 (HHV-7). The new vector, designated Tamplicon-7, replicates in CD4(+) T cells. The system is composed of a helper virus and defective virus genomes derived by the replication of the input Tamplicon vector. There are two cis-acting functions required for the replication and packaging of the defective virus genomes in the presence of the helper virus: the viral DNA replication origin and the composite cleavage and packaging signal, which directs the cleavage and packaging of defective virus genomes. Viral DNA replication is compatible with the rolling circle mechanism, producing large head-to-tail concatemers of the Tamplicon vector. Thus, in the presence of the helper virus, the replicated vectors are packaged and secreted into the medium. Furthermore, we have shown that the vector can be employed to express a foreign gene, encoding the green fluorescent protein, in the T cells infected with the HHV-7 helper virus. We predict that the Tamplicon-7 vector might be potentially useful for gene therapy of diseases affecting the human CD4(+) T cells, including autoimmune diseases, T-cell lymphomas, and AIDS.  (+info)

Interactions between tombusviruses and satellite RNAs of tomato bushy stunt virus: a defect in sat RNA B1 replication maps to ORF1 of a helper virus. (6/552)

The biological properties of two recently described satellite RNAs of tomato bushy stunt virus (TBSV) were analyzed in natural and experimental hosts. Full-length cDNA clones were constructed for sat RNAs B1(822 nt) and B10 (612 nt) and used in inoculations with satellite-free transcripts of different tombusviruses. In all virus-host combinations tested, TBSV sat RNA B10 drastically reduced the accumulation of viral genomic RNA and attenuated symptoms. In contrast, sat RNA B1 caused a less marked reduction of viral RNA level and did not have any effect on symptoms. Experiments with Nicotiana benthamiana protoplasts showed that the differential effects of sat RNAs B1 and B10 on TBSV titer were related to differential abilities to interfere with virus replication. Three tombusviruses tested were able to maintain both sat RNAs in N. benthamiana plants, although carnation Italian ringspot virus (CIRV) was a poor helper for sat RNA B1. Using chimeric viruses, a strong determinant for low sat RNA B1 accumulation was mapped to the 5'-terminal part of the genome of CIRV. The poor helper activity of CIRV was shown to be due to low sat RNA B1 replication. A single-nucleotide mutation in the start codon of CIRV ORF1 restored the ability to replicate sat RNA B1 to high levels. This mutant encodes an ORF1 that is 22 amino acids shorter at the N-terminus than the wild-type virus.  (+info)

Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. (7/552)

We have developed a new helper adenovirus (Ad) based on serotype 2, Ad2LC8cCARP, for use in the Cre/loxP system (Parks et al. Proc Natl Acad Sci USA, 1996; 93: 13565-13570) to generate Ad vectors deleted of all protein coding sequences (helper-dependent Ad vectors (hdAd)). A comparison of Ad2LC8cCARP and our original helper virus (based on serotype 5, Ad5LC8cluc) showed that the two helper viruses amplified hdAd with a similar efficiency, and resulted in a similar yield and purity after large-scale preparation of vector. In vitro, the resulting hdAd2 had a similar transduction efficiency and expression kinetics of transgene (beta-gal) as the hdAd5. An important feature of the helper-dependent system is that all virion components, except the virion DNA, derive from the helper virus. Consequently, vectors produced with help from Ad2LC8cCARP were not neutralized by antibodies against Ad5, and vectors produced with Ad5 helper were resistant to neutralizing antibodies against Ad2. Analysis of transgene expression in mouse liver after intravenous injection of the Ad2-based hdAd showed that the vector could efficiently transduce the liver, and produce high levels of a foreign transgene, similar to those expressed by the hdAd generated with the Ad5 helper virus. Mice immunized with hdAd2 produced Ad2-neutralizing antibodies, which did not cross-react with hdAd5. To determine if successful repeat Ad vector administration could be achieved by sequential use of alternative Ad serotypes, we injected mice with hdAd2 (hSEAP) followed 3 months later by a lacZ-expressing hdAd of either the same or different serotype. Repeated administration of hdAd2 resulted in a 30- to 100-fold reduction in transgene expression compared with naive animals. In contrast, no decrease in transgene expression was observed when the second vector was of a different serotype. These results demonstrate that effective vector readministration can be achieved by the sequential use of hdAds based on alternative serotypes.  (+info)

Delivery of herpes simplex virus amplicon-based vectors to the dentate gyrus does not alter hippocampal synaptic transmission in vivo. (8/552)

Herpes simplex virus type-1 (HSV) amplicon vectors containing neuroprotective genes can alter cell physiology and enhance survival following various insults. However, to date, little is known about effects of viral infection itself (independent of the gene delivered) on neuronal physiology. Electrically-evoked synaptic responses are routinely recorded to measure functional alterations in the nervous system and were used here to assess the potential capability of HSV vectors to disrupt physiology of the hippocampus (a forebrain structure involved in learning that is highly susceptible to necrotic insult, making it a frequent target in gene therapy research). Population excitatory post-synaptic potentials (EPSPs) were recorded in the dentate gyrus (DG) and in area CA3 in vivo 72 h after infusion of an HSV vector expressing a reporter gene (lacZ) or vehicle into the DG. Evoked perforant path (PP-DG) or mossy fiber (MF-CA3) EPSPs slope values measured across input/output (I/O) curves were not altered by infection. Paired-pulse facilitation at either recording site was also unaffected. X-gal-positive granule cells surrounded the recording electrode (PP-DG recording) and stimulating electrode tracts (MF-CA3 recording) in animals that received vector, suggesting that we had measured function, at least in part, in infected neurons. Because of the negative electrophysiological result, we sought to deliver a gene with an HSV amplicon which would affect the measured endpoints, as a positive control. Delivery of calbindin D28kpotentiated PP-DG synaptic strength, indicating that our recording system could detect alterations due to vector expression. Thus, the data indicate that HSV vectors are benign, in regard to effects on synaptic function, and support the use of these vectors as a safe method to deliver selected genes to the central nervous system.  (+info)