Regulation of body length and male tail ray pattern formation of Caenorhabditis elegans by a member of TGF-beta family. (1/1944)

We have identified a new member of the TGF-beta superfamily, CET-1, from Caenorhabditis elegans, which is expressed in the ventral nerve cord and other neurons. cet-1 null mutants have shortened bodies and male tail abnormal phenotype resembling sma mutants, suggesting cet-1, sma-2, sma-3 and sma-4 share a common pathway. Overexpression experiments demonstrated that cet-1 function requires wild-type sma genes. Interestingly, CET-1 appears to affect body length in a dose-dependent manner. Heterozygotes for cet-1 displayed body lengths ranging between null mutant and wild type, and overexpression of CET-1 in wild-type worms elongated body length close to lon mutants. In male sensory ray patterning, lack of cet-1 function results in ray fusions. Epistasis analysis revealed that mab-21 lies downstream and is negatively regulated by the cet-1/sma pathway in the male tail. Our results show that cet-1 controls diverse biological processes during C. elegans development probably through different target genes.  (+info)

Alzheimer's disease: clues from flies and worms. (2/1944)

Presenilin mutations give rise to familial Alzheimer's disease and result in elevated production of amyloid beta peptide. Recent evidence that presenilins act in developmental signalling pathways may be the key to understanding how senile plaques, neurofibrillary tangles and apoptosis are all biochemically linked.  (+info)

The Caenorhabditis elegans sex determination gene mog-1 encodes a member of the DEAH-Box protein family. (3/1944)

In the Caenorhabditis elegans hermaphrodite germ line, the sex-determining gene fem-3 is repressed posttranscriptionally to arrest spermatogenesis and permit oogenesis. This repression requires a cis-acting regulatory element in the fem-3 3' untranslated region; the FBF protein, which binds to this element; and at least six mog genes. In this paper, we report the molecular characterization of mog-1 as well as additional phenotypic characterization of this gene. The mog-1 gene encodes a member of the DEAH-box family. Three mog-1 alleles possess premature stop codons and are likely to be null alleles, and one is a missense mutation and is likely to retain residual activity. mog-1 mRNA is expressed in both germ line and somatic tissues and appears to be ubiquitous. The MOG-1 DEAH-box protein is most closely related to proteins essential for splicing in the yeast Saccharomyces cerevisiae, but splicing appears to occur normally in a mog-1-null mutant. In addition to its involvement in the sperm-oocyte switch and control of fem-3, zygotic mog-1 is required for robust germ line proliferation and for normal growth during development. We suggest that mog-1 plays a broader role in RNA regulation than previously considered.  (+info)

Identification of a human HECT family protein with homology to the Drosophila tumor suppressor gene hyperplastic discs. (4/1944)

Use of the differential display technique to isolate progestin-regulated genes in T-47D human breast cancer cells led to identification of a novel gene, EDD. The cDNA sequence contains a 2799 amino acid open reading frame sharing 40% identity with the predicted 2894 amino acid product of the Drosophila melanogaster tumor suppressor gene hyperplastic discs, while the carboxy-terminal 889 amino acids show 96% identity to a rat 100 kDa HECT domain protein. EDD mRNA was progestin-induced in T-47D cells and was highly abundant in testes and expressed at moderately high levels in other tissues, suggesting a broad role for EDD. Anti-EDD antibodies immunoprecipitated an approximately 300 kDa protein from T-47D cell lysates. HECT family proteins function as E3 ubiquitin-protein ligases, targeting specific proteins for ubiquitin-mediated proteolysis. EDD is likely to function as an E3 as in vitro translated protein bound ubiquitin reversibly through a conserved HECT domain cysteine residue. EDD was localized by FISH to chromosome 8q22, a locus disrupted in a variety of cancers. Given the homology between EDD and the hyperplastic discs protein, which is required for control of imaginal disc growth in Drosophila, EDD potentially has a role in regulation of cell proliferation or differentiation.  (+info)

The Caenorhabditis elegans gene ham-2 links Hox patterning to migration of the HSN motor neuron. (5/1944)

The Caenorhabditis elegans HSN motor neurons permit genetic analysis of neuronal development at single-cell resolution. The egl-5 Hox gene, which patterns the posterior of the embryo, is required for both early (embryonic) and late (larval) development of the HSN. Here we show that ham-2 encodes a zinc finger protein that acts downstream of egl-5 to direct HSN cell migration, an early differentiation event. We also demonstrate that the EGL-43 zinc finger protein, also required for HSN migration, is expressed in the HSN specifically during its migration. In an egl-5 mutant background, the HSN still expresses EGL-43, but expression is no longer down-regulated at the end of the cell's migration. Finally, we find a new role in early HSN differentiation for UNC-86, a POU homeodomain transcription factor shown previously to act downstream of egl-5 in the regulation of late HSN differentiation. In an unc-86; ham-2 double mutant the HSNs are defective in EGL-43 down-regulation, an egl-5-like phenotype that is absent in either single mutant. Thus, in the HSN, a Hox gene, egl-5, regulates cell fate by activating the transcription of genes encoding the transcription factors HAM-2 and UNC-86 that in turn individually control some differentiation events and combinatorially affect others.  (+info)

Patterning of Caenorhabditis elegans posterior structures by the Abdominal-B homolog, egl-5. (6/1944)

The Caenorhabditis elegans body axis, like that of other animals, is patterned by the action of Hox genes. In order to examine the function of one C. elegans Hox gene in depth, we determined the postembryonic expression pattern of egl-5, the C. elegans member of the Abdominal-B Hox gene paralog group, by means of whole-mount staining with a polyclonal antibody. A major site of egl-5 expression and function is in the epithelium joining the posterior digestive tract with the external epidermis. Patterning this region and its derived structures is a conserved function of Abd-B paralog group genes in other animals. Cells that initiate egl-5 expression during embryogenesis are clustered around the presumptive anus. Expression is initiated postembryonically in four additional mesodermal and ectodermal cell lineages or tissues. Once initiated in a lineage, egl-5 expression continues throughout development, suggesting that the action of egl-5 can be regarded as defining a positional cell identity. A variety of cross-regulatory interactions between egl-5 and the next more anterior Hox gene, mab-5, help define the expression domains of their respective gene products. In its expression in a localized body region, function as a marker of positional cell identity, and interactions with another Hox gene, egl-5 resembles Hox genes of other animals. This suggests that C. elegans, in spite of its small cell number and reproducible cell lineages, may not differ greatly from other animals in the way it employs Hox genes for regional specification during development.  (+info)

Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in Notch-pathway signaling. (7/1944)

Mutations in the human presenilin genes PS1 and PS2 cause early-onset Alzheimer's disease. Studies in Caenorhabditis elegans and in mice indicate that one function of presenilin genes is to facilitate Notch-pathway signaling. Notably, mutations in the C. elegans presenilin gene sel-12 reduce signaling through an activated version of the Notch receptor LIN-12. To investigate the function of a second C. elegans presenilin gene hop-1 and to examine possible genetic interactions between hop-1 and sel-12, we used a reverse genetic strategy to isolate deletion alleles of both loci. Animals bearing both hop-1 and sel-12 deletions displayed new phenotypes not observed in animals bearing either single deletion. These new phenotypes-germ-line proliferation defects, maternal-effect embryonic lethality, and somatic gonad defects-resemble those resulting from a reduction in signaling through the C. elegans Notch receptors GLP-1 and LIN-12. Thus SEL-12 and HOP-1 appear to function redundantly in promoting Notch-pathway signaling. Phenotypic analyses of hop-1 and sel-12 single and double mutant animals suggest that sel-12 provides more presenilin function than does hop-1.  (+info)

Differential serodiagnosis for cystic and alveolar echinococcosis using fractions of Echinococcus granulosus cyst fluid (antigen B) and E. multilocularis protoscolex (EM18). (8/1944)

Echinococcus granulosus cyst fluid and E. multilocularis protoscolex extract were fractionated by a single step of preparative isoelectric focusing, resulting in an antigen B-rich fraction (8-kD) and an Em18-rich fraction, respectively. The usefulness of both fractions for differential serodiagnosis of cystic (CE) and alveolar (AE) echinococcosis was evaluated by a large-scale immunoblot analysis on a battery of 354 serum samples. These included 66 from AE patients originating from four different endemic areas, 173 from CE patients originating from seven different endemic areas, 71 from patients with other parasitic diseases, 15 from patients with hepatomas, and 29 from healthy individuals. In an immunoblot with the antigen B-rich fraction, 92% (158 of 173) of the CE sera as well as 79% (52 of 66) of the AE sera reacted with the 8-kD subunit. No cross-reactivity occurred with any sera from patients with cysticercosis, other parasitic diseases, or with hepatomas, or from healthy controls. In an immunoblot with the Em18-rich fraction, all but two sera from AE patients (64 of 66, 97%) recognized Em18, and only nine of 34 CE sera from China reacted with it. All other (139) CE sera from six other countries were negative as were all (115) other non-echinococcosis sera. These findings indicate that antigen B (8-kD) is not species-specific for E. granulosus but is genus-specific for Echinococcus, and that the Em18 antigen is a reliable serologic marker for species-specific differentiation of AE from CE.  (+info)